菲涅尔公式 布儒斯特角

             

预备知识 麦克斯韦方程组(介质)
图
图 1:菲涅尔公式

   利用具体的电磁场的边界条件

   现在分两种情况讨论

  1. 极化方向垂直于入射面(图 1 右)
    \begin{equation} \frac{E_R^{(s)}}{E_I^{(s)}} = \frac{m_1\cos{\theta_I} - m_2\cos\theta_T}{m_1\cos\theta_I + m_2\cos\theta_T} \qquad \frac{E_T^{(s)}}{E_I^{(s)}} = \frac{2 m_1\cos\theta_I}{m_1\cos\theta_I + m_2\cos\theta_T} \end{equation}
  2. 极化方向平行于入射面(图 1 左)
    \begin{equation} \frac{E_R^{(p)}}{E_I^{(p)}} = \frac{m_2\cos\theta_I - m_1\cos\theta_T}{m_2 \cos\theta_I + m_1\cos\theta_T} \qquad \frac{E_T^{(p)}}{E_I^{(p)}} = \frac{2 m_1\cos\theta_I}{m_2\cos\theta_I + m_1\cos\theta_T} \end{equation}

   其中 $m_I=n_I/\mu_I = c\sqrt{\epsilon_I/\mu_I}$,一般情况下介质的磁导率于真空区磁导率的区别可忽略,即可以把 $m_I$ 替换为折射率 $n_I$.另外注意菲涅尔公式包含相位信息,即以上的 $E$ 可以是复振幅.

1. 布儒斯特角

   我们这里考虑常见的 $n_2 > n_1$ 且 $\mu_1 = \mu_2$ 情况.由式 2 容易证明当入射角为布儒斯特角(Brewster's angle) 时反射光的平行(p)分量消失.布儒斯特角等于

\begin{equation} \theta_B = \arctan\left(n_2/n_1\right) \end{equation}

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

         

© 小时科技 保留一切权利