平面旋转变换

                     

贡献者: addis; Giacomo

  • 本文处于草稿阶段。
预备知识 三角恒等式,极坐标系,几何向量的线性变换
图
图 1:把矢量绕原点旋转 $\alpha$ 角

   已知直角坐标系中一点 $P(x,y)$,$P$ 绕原点逆时针旋转 $\alpha $ 角($\alpha \in R$)之后变为 $P'(x',y')$ 则有

\begin{align} x' &= (\cos \alpha)x + (- \sin \alpha)y ~,\\ y' &= (\sin \alpha)x + (\cos \alpha)y~. \end{align}
其逆变换如下,即已知 $P'(x',y')$ 求 $P(x,y)$
\begin{align} x &= ( \cos \alpha )x' + ( \sin \alpha )y' ~,\\ y &= ( - \sin \alpha)x' + ( \cos \alpha )y'~, \end{align}
这相当于把 $(x', y')$ 顺时针旋转 $\alpha$ 得到 $(x, y)$。

绕任点旋转

   要绕任意点 $(x_0, y_0)$ 旋转,只需要先把矢量末端平移 $(-x_0, -y_0)$,绕原点旋转后再平移 $(x_0, y_0)$ 即可

\begin{equation} \begin{aligned} x' &= ( \cos \alpha )(x-x_0) + ( \sin \alpha )(y-y_0) + x_0 ~,\\ y' &= ( - \sin \alpha)(x-x_0) + ( \cos \alpha )(y-y_0) + y_0~. \end{aligned} \end{equation}

例 1 旋转双曲线

   我们来证明函数 $y' = 1/x'$ 的曲线为双曲线。由于双曲线标准方程表示的双曲线是关于 $x$ 轴对称的,我们需要把 $(x', y')$ 顺时针旋转 $\pi/4$ 得到 $(x, y)$,即上面的 $\alpha = \pi/4$。把式 1 式 2 代入 $y' = 1/x'$ 得

\begin{equation} \frac{x^2}{2} - \frac{y^2}{2} = 1~. \end{equation}
这符合双曲线的标准方程,所以 $y' = 1/x'$ 是一个双曲线。

1. 推导

   平面上一点 $P(x,y)$ 也可以用极坐标 $(r, \theta)$ 表示,一般情况下令极点与原点重合,极径与 $x$ 轴重合,则有

\begin{equation} x = r\cos \theta~, \qquad y = r\sin \theta ~. \end{equation}
把点 $P$ 绕原点逆时针旋转 $\alpha $ 角变为 $P'$,则 $P'$ 极坐标为 $(r, \theta + \alpha)$。根据上式计算为 $P'$ 的直角坐标 $(x', y')$ 并用两角和公式(式 4 )化简如下
\begin{align} x' &= r \cos\left(\theta + \alpha\right) = r\cos\theta \cos\alpha - r\sin\theta \sin\alpha = x\cos\alpha - y\sin\alpha ~,\\ y' &= r \sin\left(\theta + \alpha\right) = r\sin\theta \cos\alpha + r\cos\theta \sin\alpha = x\sin\alpha + y\cos\alpha ~. \end{align}
这就证明了式 1 式 2 两式。

   若要证式 3 式 4 有两种方法。一是将式 1 式 2 式中的 $x, y$ 看成未知数,解二元一次方程组。另一种方法的思路是,既然 $P$ 逆时针旋转 $\alpha $ 角为 $P'$,那么把 $P'$ 顺时针旋转 $\alpha$ 角可得到 $P$。而 “顺时针旋转 $\alpha$ 角” 就是 “逆时针旋转 $-\alpha $ 角”。把变换式 1 式 2 中的 $\alpha$ 换为 $-\alpha$ 再化简得

\begin{align} x &= \cos\left(-\alpha\right) x' - \sin\left(-\alpha\right) y' = \cos\alpha x' + \sin\alpha y'~,\\ y &= \sin\left(-\alpha\right) x' + \cos\left(-\alpha\right) y' = -\sin\alpha x' + \cos\alpha y'~. \end{align}
证毕。


致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择大量广告以及内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 20 元,我们一周就能脱离亏损, 并在接下来的一年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

                     

友情链接: 超理论坛 | ©小时科技 保留一切权利