矢量叉乘分配律的几何证明

             

预备知识 矢量的叉乘

   证明 $ \boldsymbol{\mathbf{A}} \boldsymbol\times ( \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{C}} ) = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} $

图
图 1:把 $ \boldsymbol{\mathbf{B}} , \boldsymbol{\mathbf{C}} , \boldsymbol{\mathbf{D}} $ 投影到与 $ \boldsymbol{\mathbf{A}} $ 垂直的平面上

   首先令

\begin{equation} \boldsymbol{\mathbf{D}} = \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{C}} \end{equation}
把矢量 $ \boldsymbol{\mathbf{B}} , \boldsymbol{\mathbf{C}} , \boldsymbol{\mathbf{D}} $ 在与矢量 $ \boldsymbol{\mathbf{A}} $ 垂直的平面上投影,分别得到 $ \boldsymbol{\mathbf{B}} ', \boldsymbol{\mathbf{C}} ', \boldsymbol{\mathbf{D}} '$.显然,$ \boldsymbol{\mathbf{D}} '= \boldsymbol{\mathbf{B}} '+ \boldsymbol{\mathbf{C}} '$.

   现在先证明

\begin{equation} \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} ' \end{equation}
这是叉乘的一个基本的性质.首先, 根据叉乘的几何定义,$ \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} $ 与 $ \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} '$ 的方向相同.另外
\begin{equation} \left\lvert \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} \right\rvert = \left\lvert \boldsymbol{\mathbf{A}} \right\rvert \left\lvert \boldsymbol{\mathbf{B}} \right\rvert \sin{\theta_{AB}} = \left\lvert \boldsymbol{\mathbf{A}} \right\rvert \left\lvert \boldsymbol{\mathbf{B}} ' \right\rvert = \left\lvert \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} ' \right\rvert \end{equation}
所以二者模长也相等,证毕.

   同理有

\begin{equation} \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} ' \end{equation}
\begin{equation} \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} ' \end{equation}
所以,要证明
\begin{equation} \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} \end{equation}
只需要证明
\begin{equation} \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} ' = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} ' + \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} ' \end{equation}
即可.

   由于 $ \boldsymbol{\mathbf{B}} ', \boldsymbol{\mathbf{C}} ', \boldsymbol{\mathbf{D}} '$ 都与 $ \boldsymbol{\mathbf{A}} $ 垂直,所以 $ \boldsymbol{\mathbf{A}} $ 与之叉乘的效果相当于 $ \boldsymbol{\mathbf{B}} ', \boldsymbol{\mathbf{C}} ', \boldsymbol{\mathbf{D}} '$ 的模长分别乘以 $ \left\lvert \boldsymbol{\mathbf{A}} \right\rvert $,且绕 $ \boldsymbol{\mathbf{A}} $ 逆时针分别旋转 $90^\circ$.所以上式就是在说,若已知 $ \boldsymbol{\mathbf{B}} ' + \boldsymbol{\mathbf{C}} ' = \boldsymbol{\mathbf{D}} '$,那么把它们分别乘以常数并旋转 $90^\circ$ 后这个加法仍然成立.这是显然的.证毕.

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

         

© 小时科技 保留一切权利