电场波动方程

                     

贡献者: addis

  • 本文处于草稿阶段。
  • 需要增加复数形式
预备知识 麦克斯韦方程组(介质)矢量算符运算法则平面波

   真空中,由麦克斯韦方程组

\begin{equation} \boldsymbol{\nabla}\boldsymbol{\times} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) = - \frac{\partial}{\partial{t}} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) = -\epsilon_0\mu_0 \frac{\partial^{2}}{\partial{t}^{2}} \boldsymbol{\mathbf{E}} ~. \end{equation}
根据式 11 化简得
\begin{equation} \boldsymbol{\nabla}^2 \boldsymbol{\mathbf{E}} - \frac{1}{c^2} \frac{\partial^{2}{ \boldsymbol{\mathbf{E}} }}{\partial{t}^{2}} = 0~, \end{equation}
这就是电场的波动方程。所以电场的各个分量分别满足三维波动方程(链接未完成)。它的解为平面波
\begin{equation} \boldsymbol{\mathbf{E}} ( \boldsymbol{\mathbf{r}} , t) = \boldsymbol{\mathbf{E}} _0 \cos\left( \boldsymbol{\mathbf{k}} \boldsymbol\cdot \boldsymbol{\mathbf{r}} - \omega t\right) ~, \end{equation}
其中 $\omega = c \left\lvert \boldsymbol{\mathbf{k}} \right\rvert = ck$。而通解是这些平面波的任意线性组合。注意如果 $ \boldsymbol{\mathbf{E}} _0$ 中存在平行于 $ \boldsymbol{\mathbf{k}} $ 的分量,那么 $ \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} \ne 0$,所以二者必须垂直,即 $ \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{k}} = 0$。电场的通解可表示为
\begin{equation} \boldsymbol{\mathbf{E}} ( \boldsymbol{\mathbf{r}} , t) = \int \boldsymbol{\mathbf{E}} _0( \boldsymbol{\mathbf{k}} ) \cos\left( \boldsymbol{\mathbf{k}} \boldsymbol\cdot \boldsymbol{\mathbf{r}} - \omega k t\right) \,\mathrm{d}^{3}{k} ~. \end{equation}

   根据 $ \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} = - \partial \boldsymbol{\mathbf{B}} /\partial t $,可求出式 3 伴随的磁场为

\begin{equation} \boldsymbol{\mathbf{B}} ( \boldsymbol{\mathbf{r}} , t) = \boldsymbol{\mathbf{B}} _0 \cos\left( \boldsymbol{\mathbf{k}} \boldsymbol\cdot \boldsymbol{\mathbf{r}} - \omega t\right) ~. \end{equation}
其中 $ \boldsymbol{\mathbf{B}} _0$ 的模长为 $ \left\lvert \boldsymbol{\mathbf{B}} _0 \right\rvert = \left\lvert \boldsymbol{\mathbf{E}} _0 \right\rvert /c$,于 $ \boldsymbol{\mathbf{E}} _0$ 垂直,方向满足 $ \hat{\boldsymbol{\mathbf{E}}} \boldsymbol\times \hat{\boldsymbol{\mathbf{B}}} = \hat{\boldsymbol{\mathbf{k}}} $。可见电磁波是横波

1. 介质中

   非线性光学中一般认为介质具有 $\mu = \mu_0$,且假设 $ \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} = 0$ 仍然成立

   介质中没有自由电荷或自由电流。

   类似真空情况的推导过程,有

\begin{equation} \boldsymbol{\nabla}\boldsymbol{\times} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) = - \frac{\partial}{\partial{t}} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) = -\mu_0 \frac{\partial}{\partial{t}} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{H}} ) = -\mu_0 \frac{\partial^{2}}{\partial{t}^{2}} \boldsymbol{\mathbf{D}} ~. \end{equation}

   把电位移矢量的定义 $ \boldsymbol{\mathbf{D}} = \epsilon_0 \boldsymbol{\mathbf{E}} + \boldsymbol{\mathbf{P}} $ 代入上式,化简为

\begin{equation} \boldsymbol{\nabla}\boldsymbol{\times} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) = - \frac{\partial}{\partial{t}} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) = -\mu_0 \frac{\partial}{\partial{t}} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{H}} ) = -\mu_0 \frac{\partial^{2}}{\partial{t}^{2}} \boldsymbol{\mathbf{D}} ~. \end{equation}

                     

© 小时科技 保留一切权利