方势垒

             

预备知识 无限深势阱,一维散射态的正交归一化

   本文采用原子单位制.我们要解一维定态薛定谔方程(参考式 5 )为

\begin{equation} -\frac{1}{2m} \frac{\mathrm{d}^{2}{\psi}}{\mathrm{d}{x}^{2}} + V\psi= E \psi \end{equation}
令方势垒长度为 $2l$,关于原点对称.势能函数为
\begin{equation} V(x) = \begin{cases} 0 & (x < -l)\\ V_0 & (-l \leqslant x < l)\\ 0 & (l \leqslant x) \end{cases} \end{equation}
一些教材把势垒放在区间 $[0, a]$,这时只需令 $a = 2l$,把解出的波函数做一个平移即可.以下讨论两种常见的解,一种类似于 $ \sin\left(kx\right) , \cos\left(kx\right) $ 另一种类似于 $ \exp\left( \mathrm{i} kx\right) , \exp\left(- \mathrm{i} kx\right) $.

1. 奇偶函数解

   对称势能的好处是存在奇和偶的实函数解,且它们自动正交.

$E \ge V_0$ 的情况

   令

\begin{equation} k = \sqrt{2mE} \qquad b = \sqrt{2m(E-V_0)} \end{equation}
令对称解和反对称的波函数分别为
\begin{equation} \psi_{ \boldsymbol{\mathbf{k}} }^e(x) = \begin{cases} A_1 \cos\left(bx\right) & (0 \leqslant x \leqslant l)\\ C_1 \cos\left(kx\right) + D_1 \sin\left(kx\right) & (l < x)\\ \psi_{ \boldsymbol{\mathbf{k}} }^e(-x) & (x < 0) \end{cases} \end{equation}
\begin{equation} \psi_{ \boldsymbol{\mathbf{k}} }^o(x) = \begin{cases} B_2 \sin\left(bx\right) & (0 \leqslant x \leqslant l)\\ C_2 \cos\left(kx\right) + D_2 \sin\left(kx\right) & (l < x)\\ -\psi_{ \boldsymbol{\mathbf{k}} }^o(-x) & (x < 0) \end{cases} \end{equation}
其中 $l < x$ 的部分也可以分别记为
\begin{equation} G_i \sin\left(kx + \phi_i\right) \qquad (i = 1,2) \end{equation}
\begin{equation} G_i = \sqrt{C_i^2 + D_i^2} \qquad \phi_i = \operatorname{Arctan} (C_i, D_i) \qquad (i = 1,2) \end{equation}

   在 $x = l$ 处匹配波函数和一阶导数,解得

\begin{equation} \left\{\begin{aligned} \frac{C_1}{A_1} &= \cos\left(kl\right) \cos\left(bl\right) + \frac{b}{k} \sin\left(kl\right) \sin\left(bl\right) \\ \frac{D_1}{A_1} &= -\frac{b}{k} \cos\left(kl\right) \sin\left(bl\right) + \sin\left(kl\right) \cos\left(bl\right) \end{aligned}\right. \end{equation}
\begin{equation} \left\{\begin{aligned} \frac{C_2}{B_2} &= \cos\left(kl\right) \sin\left(bl\right) - \frac{b}{k} \sin\left(kl\right) \cos\left(bl\right) \\ \frac{D_2}{B_2} &= \frac{b}{k} \cos\left(kl\right) \cos\left(bl\right) + \sin\left(kl\right) \sin\left(bl\right) \end{aligned}\right. \end{equation}
对波函数归一化使 $\int \psi_k'(x)\psi_k(x) = \delta(k'-k)$,令无穷远处振幅为 $1/\sqrt{\pi}$(定理 1 ),得
\begin{equation} \begin{aligned} A_1 = \frac{1}{\sqrt{\pi} \sqrt{ \cos^{2}\left(bl\right) + (b^2/k^2) \sin^{2}\left(bl\right) }}\\ B_2 = \frac{1}{\sqrt{\pi} \sqrt{ \sin^{2}\left(bl\right) + (b^2/k^2) \cos^{2}\left(bl\right) }} \end{aligned} \end{equation}

$0 < E < V_0$ 的情况

   令 $\kappa = \sqrt{2m(V_0-E)}$

\begin{equation} \psi_{ \boldsymbol{\mathbf{k}} }^e(x) = \begin{cases} A_1 \cosh\left(\kappa x\right) & (0 \leqslant x \leqslant l)\\ C_1 \cos\left(kx\right) + D_1 \sin\left(kx\right) & (l < x) \end{cases} \end{equation}
\begin{equation} \psi_{ \boldsymbol{\mathbf{k}} }^o(x) = \begin{cases} A_2 \sinh\left(\kappa x\right) & (0 \leqslant x \leqslant l)\\ C_2 \cos\left(kx\right) + D_2 \sin\left(kx\right) & (l < x) \end{cases} \end{equation}
在 $x = l$ 处匹配波函数和一阶导数,分别得
\begin{equation} \left\{\begin{aligned} &A_1 \cosh\left(\kappa l\right) = C_1 \cos\left(kl\right) + D_1 \sin\left(kl\right) \\ &\kappa A_1 \sinh\left(\kappa l\right) = - kC_1 \sin\left(kl\right) + kD_1 \cos\left(kl\right) \end{aligned}\right. \end{equation}
\begin{equation} \left\{\begin{aligned} &A_2 \sinh\left(\kappa l\right) = C_2 \cos\left(kl\right) + D_2 \sin\left(kl\right) \\ &\kappa A_2 \cosh\left(\kappa l\right) = -kC_2 \sin\left(kl\right) + k D_2 \cos\left(kl\right) \end{aligned}\right. \end{equation}
解得
\begin{equation} \left\{\begin{aligned} &\frac{C_1}{A_1} = \cosh\left(\kappa l\right) \cos\left(kl\right) - \frac{\kappa}{k} \sinh\left(\kappa l\right) \sin\left(kl\right) \\ &\frac{D_1}{A_1} = \cosh\left(\kappa l\right) \sin\left(kl\right) + \frac{\kappa}{k} \sinh\left(\kappa l\right) \cos\left(kl\right) \end{aligned}\right. \end{equation}
\begin{equation} \left\{\begin{aligned} &\frac{C_2}{A_2} = \sinh\left(\kappa l\right) \cos\left(kl\right) - \frac{\kappa}{k} \cosh\left(\kappa l\right) \sin\left(kl\right) \\ &\frac{D_2}{A_2} = \sinh\left(\kappa l\right) \sin\left(kl\right) + \frac{\kappa}{k} \cosh\left(\kappa l\right) \cos\left(kl\right) \end{aligned}\right. \end{equation}
对波函数归一化,同样令无穷远处振幅为 $1/\sqrt{\pi}$ 得
\begin{equation} A_1 = \frac{1}{\sqrt{\pi}\sqrt{\cosh^2(\kappa l) + (\kappa/k)^2 \sinh^2(kl)}} \end{equation}
\begin{equation} A_2 = \frac{1}{\sqrt{\pi}\sqrt{\sinh^2(\kappa l) + (\kappa/k)^2 \cosh^2(kl)}} \end{equation}

2. 行波解

   令左、中、右三个区间 $\exp$ 项的系数分别为 $A,B$、$C,D$、$E,F$.左边右入射和出射,右边只有出射没有反射

\begin{equation} \psi_{k,1}(x) = \left\{\begin{aligned} &A \exp\left( \mathrm{i} kx\right) + B \exp\left(- \mathrm{i} kx\right) &\quad& (x < -L)\\ &C \exp\left( \mathrm{i} bx\right) + D \exp\left(- \mathrm{i} bx\right) && (-L \le x \le L)\\ &F \exp\left(- \mathrm{i} kx\right) &\quad& (x < -L)\\ \end{aligned}\right. \end{equation}
\begin{equation} \psi_{k,2}(x) = \psi_{k,1}(-x) \end{equation}
要归一化只需满足 $A = 1/\sqrt{2\pi}$(式 19 ).

$E > V_0$ 的情况

   当 $E > V_0$ 时,系数解为

\begin{equation} \left\{\begin{aligned} &A = 1/\sqrt{2\pi}\\ &B = \mathcal{N}\cdot (k^2 - b^2) \sin\left(2bl\right) \exp\left(- \mathrm{i} kl\right) \\ &C = \mathcal{N}\cdot \mathrm{i} k (k + b) \exp\left(- \mathrm{i} bl\right) \\ &D = \mathcal{N}\cdot \mathrm{i} k(b-k) \exp\left( \mathrm{i} bl\right) \\ &E = \mathcal{N}\cdot 2 \mathrm{i} kb \exp\left(- \mathrm{i} kl\right) \end{aligned}\right. \end{equation}
其中
\begin{equation} \mathcal{N} = \frac{1}{\sqrt{2\pi}}\frac{(k^2 + b^2) \sin\left(2bl\right) - 2 \mathrm{i} kb \cos\left(2bl\right) }{(k^2-b^2)^2\sin^2(2bl) + 4k^2b^2} \exp\left(- \mathrm{i} kl\right) \end{equation}
可以验证 $\psi_{k,1}, \psi_{k,2}$ 正交的条件(式 26 )$ \operatorname{Re} [B^*E] = 0$.

   透射率,反射率分别为

\begin{equation} T = \left\lvert \frac{E}{A} \right\rvert ^2 = \frac{4k^2b^2}{(k^2-b^2)^2\sin^2(2bl) + 4k^2b^2} \end{equation}
\begin{equation} R = \left\lvert \frac{B}{A} \right\rvert ^2 = \frac{(k^2 - b^2) \sin^{2}\left(2bl\right) }{(k^2-b^2)^2\sin^2(2bl) + 4k^2b^2} \end{equation}

$0 < E < V_0$ 的情况

   当 $0 < E < V_0$ 时,系数解为

\begin{equation} \left\{\begin{aligned} &A = 1/\sqrt{2\pi}\\ &B = \mathcal{N}\cdot (\kappa ^2 + k^2) \sinh\left(2\kappa l\right) \exp\left(- \mathrm{i} kl\right) \\ &C = \mathcal{N}\cdot k( \mathrm{i} \kappa - k) \exp\left(-\kappa l\right) \\ &D = \mathcal{N}\cdot k( \mathrm{i} \kappa + k) \exp\left(\kappa l\right) \\ &E = \mathcal{N}\cdot 2 \mathrm{i} k\kappa \exp\left(- \mathrm{i} kl\right) \end{aligned}\right. \end{equation}
\begin{equation} \mathcal{N} = \frac{1}{\sqrt{2\pi}}\frac{(k^2 - \kappa ^2) \sinh\left(2\kappa l\right) - 2 \mathrm{i} k\kappa \cosh\left(2\kappa l\right) }{(k^2+\kappa^2)^2\sinh^2(2\kappa l) + 4k^2\kappa^2} \exp\left(- \mathrm{i} kl\right) \end{equation}
\begin{equation} T = \left\lvert \frac{E}{A} \right\rvert ^2 = \frac{4k^2\kappa ^2}{(k^2+\kappa^2)^2\sinh^2(2\kappa l) + 4k^2\kappa^2} \end{equation}
\begin{equation} R = \left\lvert \frac{B}{A} \right\rvert ^2 = \frac{(\kappa ^2 + k^2) \sinh^{2}\left(2\kappa l\right) }{(k^2+\kappa^2)^2\sinh^2(2\kappa l) + 4k^2\kappa^2} \end{equation}

  

未完成:未完成:透射率反射率画图

投影系数

   任意平方可积的波函数可以用正交归一化的行波展开为

\begin{equation} \psi(x) = \int_0^{+\infty} C_1(k)\psi_{k,1}(x) + C_2(k)\psi_{k,2}(x) \,\mathrm{d}{k} \end{equation}
若 $\psi(x)$ 只在 $x < -L$ 不为零,则有
\begin{equation} \begin{aligned} &C_1(k) = \left\langle \psi_{k,1} \middle| \psi \right\rangle = \tilde\psi(k) + \sqrt{2\pi} B^* \tilde\psi(-k)\\ &C_2(k) = \left\langle \psi_{k,2} \middle| \psi \right\rangle = \sqrt{2\pi} E^* \tilde\psi(-k) \end{aligned} \end{equation}
其中 $\tilde\psi(k)$ 是 $\psi(x)$ 的傅里叶变换
\begin{equation} \tilde\psi(k) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} \psi(x) \mathrm{e} ^{- \mathrm{i} kx} \,\mathrm{d}{x} \end{equation}
具体例子见 “方势垒散射数值计算”,我们将把一个高斯波包展开为散射态的积分.

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

广告位

投放详情

         

© 小时科技 保留一切权利