贡献者: JierPeter
直观来说,纤维丛是指在一个拓扑空间 $B$ 的每一个点都长出来另一个拓扑空间 $F$ 所得到的一个空间。每一个点 $x\in B$ 上的 $F$ 被称为一根纤维(fibre),这些纤维所在的 $B$ 称为底空间(base space),而整个结构 $(B, F)$ 就是一个纤维丛(fibre bundle)。
准确的定义如下所述,其中 $E$ 就是 “$B$ 上每个点都长出一个 $F$ 的丛空间”:
如果把 $B$ 想象成一块土地,$F$ 想象成一棵草,那么 $E$ 就是 “土地上长了一片草” 这一概念,$E$ 的每个元素就是某棵草上的一个点。定义中的连续满射 $f$ 的作用是把这样的一个点映射到相应的草所在的地点。
要注意的是,$E$ 不完全等同于 $B\times F$。对于 $B\times F$ 来说,任意给定两个 $x_1, x_2\in B$,我们自然可以找到 $x_1\times F$ 和 $x_2\times F$ 上的一一对应关系,这是由集合笛卡尔积的定义决定的。但是纤维丛 $E$ 上,如果上述 $x_1\not=x_2$,那么两个地方长出来的纤维是没有天然的双射对应的的1。这就是 “纤维丛” 这一名称的深意,而乘积空间应该被想象纤维被粘在一起的情况,只是纤维丛的一个定义了额外联系的特例。
两个纤维丛之间可以有映射偶:
向量丛是纤维丛的特例,即纤维都是向量空间的情况。
向量丛之间也有丛映射:
虽然,一个向量丛 $(E, V, B, \phi)$ 不能简单等同于 $B\times V$,不过 $B\times V$ 本身也是一个纤维丛,称之为平凡(trivial)的纤维丛。
1. ^ 在微分几何中,我们研究的切丛是纤维丛的一种,而所谓的 “联络” 实际上就是指定了不同纤维间的双射。
2. ^ 即只考虑 $p$ 处纤维的映射 $\varphi$。
 
 
 
 
 
 
 
 
 
 
 
友情链接: 超理论坛 | ©小时科技 保留一切权利