电磁场标势和矢势

             

  • 本词条处于草稿阶段.
预备知识 法拉第电磁感应,磁矢势

   用标势和矢势表示电磁场

\begin{equation} \boldsymbol{\mathbf{E}} = - \boldsymbol\nabla \varphi - \frac{\partial \boldsymbol{\mathbf{A}} }{\partial t} \end{equation}
\begin{equation} \boldsymbol{\mathbf{B}} = \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{A}} \end{equation}

1. 推导

   首先定义 $ \boldsymbol{\mathbf{A}} $,则由法拉第电磁感应定律(式 2

\begin{equation} \boldsymbol{\nabla}\boldsymbol{\times} \left( \boldsymbol{\mathbf{E}} + \frac{\partial \boldsymbol{\mathbf{A}} }{\partial t} \right) = \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} + \frac{\partial \boldsymbol{\mathbf{B}} }{\partial t} = \boldsymbol{\mathbf{0}} \end{equation}
这说明括号中的矢量可以表示为一个标量函数的梯度,即标势 $\varphi$,负号是为了在静电场的情况下使得标势等于电势.

2. 标势和矢势的麦克斯韦方程组

   将式 1 式 2 代入麦克斯韦方程组可以得到两条与麦克斯韦方程组等效的方程

\begin{equation} \boldsymbol{\nabla}^2 \varphi + \frac{\partial}{\partial{t}} ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{A}} ) = -\frac{\rho}{\epsilon_0} \end{equation}
\begin{equation} \left( \boldsymbol{\nabla}^2 \boldsymbol{\mathbf{A}} - \mu_0\epsilon_0 \frac{\partial^{2}{ \boldsymbol{\mathbf{A}} }}{\partial{t}^{2}} \right) - \boldsymbol\nabla \left( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{A}} + \mu_0\epsilon_0 \frac{\partial \varphi}{\partial t} \right) = -\mu_0 \boldsymbol{\mathbf{J}} \end{equation}

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

         

© 小时科技 保留一切权利