贡献者: JierPeter; addis
定义联络时,我们讲联络看成是向量场之间的映射,$\nabla_{ \boldsymbol{\mathbf{X}} } \boldsymbol{\mathbf{Y}} $ 中的 $ \boldsymbol{\mathbf{X}} $ 和 $ \boldsymbol{\mathbf{Y}} $ 都是光滑向量场。也就是说,我们着眼于场的整体,而没有关注局部的性质,比如某个点或者某个轨迹上的切向量场如何变化。
不过,在Christoffel 符号词条中我们看到,在具体图中计算联络时,只用到了几个定义在欧几里得空间的函数,也就是向量场的坐标值函数和 Christoffel 符号。欧几里得空间上函数的求导是可以考虑局部的,也就是我们可以计算一个点上函数的导数,而不必像联络的定义那样要考虑整个场的变换。这就意味着我们有可能局部地计算联络。
考虑一个带联络的 $n$ 维实流形 $(M, \nabla)$。令 $c:I\to M$ 是一个从区间 $[0, 1]$ 到流形 $M$ 上的连续映射,我们称之为一条道路。沿着 $c(t)|_{t\in I}$ 定义一个光滑切向量场 $ \boldsymbol{\mathbf{X}} (t)$。也就是说,各 $ \boldsymbol{\mathbf{X}} (t)$ 都是 $c(t)$ 处的切向量,但不一定是沿着 $c'(t)$ 方向的1。
比如说,令 $M$ 二维球面 $S^2$,嵌入为三维欧几里得空间中圆心在原点的单位球面。取 $c(t)= \begin{pmatrix}\cos t&\sin t&0\end{pmatrix} ^{\mathrm{T}} $。如果令 $ \boldsymbol{\mathbf{X}} (t)= \begin{pmatrix}0&0& \mathrm{e} ^t\end{pmatrix} $,那么它处处是 $S^2$ 上的切向量,且沿着 $c(t)$ 的各坐标分量都是关于 $t$ 的光滑函数,因此是沿着 $c(t)$ 的光滑向量场,但它和 $c'(t)$ 处处都不平行。
如果 $M$ 是欧几里得空间,那么我们已经知道该怎么求 $\frac{ \,\mathrm{d}{}} { \,\mathrm{d}{t} } \boldsymbol{\mathbf{X}} (t)$ 了,因为 $ \boldsymbol{\mathbf{X}} (t)$ 可以自然地表示成坐标形式,我们对每个坐标求导就可以了。具体来说,如果 $ \boldsymbol{\mathbf{X}} (t)=x^i(t)\partial_i$,那么 $\frac{ \,\mathrm{d}{}} { \,\mathrm{d}{t} } \boldsymbol{\mathbf{X}} (t)=\dot{x}^i(t)\partial_i$。
欧几里得空间中,沿给定道路求导的过程满足以下性质:
式 2 很重要,它意味着至少在欧几里得空间中,沿着道路对切向量求导,可以由联络(方向导数)导出。顺着这个思想,我们可以尝试将沿道路求导的概念拓展到任意的流形 $M$ 上。
在 $M$ 上局部区域定义的光滑切向量场,比如道路 $c(t)$ 上的 $ \boldsymbol{\mathbf{X}} (t)$,能不能拓展到整个流形 $M$ 呢?也就是说,是否存在一个 $M$ 上的光滑切向量场 $\widetilde{ \boldsymbol{\mathbf{X}} }$,使得 $ \boldsymbol{\mathbf{X}} (t)=\widetilde{ \boldsymbol{\mathbf{X}} }|_{c(t)}$ 呢?
答案是肯定的。这是因为任意 $n$ 维实流形 $M$,都可以嵌入到 $\mathbb{R}^{2n}$ 上。换句话说,存在一个 $\mathbb{R}^{2n}$ 上的光滑函数 $f$,使得 $\mathbb{R}^{2n}$ 的子流形 $\{p\in\mathbb{R}^{2n}|f(p)=0\}$,和 $M$ 微分同胚(或者说就是 $M$ 本身)。使用 $\mathbb{R}^{2n}$ 天然的坐标,可以把任何切向量场表示成 $\mathbb{R}^{2n}$ 上光滑函数的组合3。我们总可以把局部的光滑函数拓展为整个 $\mathbb{R}^{2n}$ 上的光滑函数,从而把局部的光滑切向量场拓展为整个 $\mathbb{R}^{2n}$ 上的光滑切向量场。对这个拓展的切场取在 $M$ 上的限制,再投影到 $M$ 上,即得到在 $M$ 上的拓展。
继续之前的讨论,令 $ \boldsymbol{\mathbf{X}} (t)$ 是沿着 $c(t)$ 的光滑切向量场。将 $ \boldsymbol{\mathbf{X}} (t)$ 拓展为整个 $M$ 上的光滑切场 $\widetilde{ \boldsymbol{\mathbf{X}} }$,$c'(t)$ 拓展为 $ \boldsymbol{\mathbf{T}} $。
$\nabla_{ \boldsymbol{\mathbf{T}} }\widetilde{ \boldsymbol{\mathbf{X}} }$ 是可以计算出来的。考虑到欧几里得空间中沿道路求导的第 3 条性质,也就是和方向导数(联络)的相容性,我们可以沿着 $c(t)$ 定义一个算子 $\frac{D}{ \,\mathrm{d}{t} }$,使得:
我们称如上定义的 $\frac{D}{ \,\mathrm{d}{t} } \boldsymbol{\mathbf{X}} (t)$ 为 $ \boldsymbol{\mathbf{X}} $ 沿着道路 $c(t)$ 的协变导数(covariant derivative)。
欧几里得空间上沿着 $c(t)$ 求 $ \boldsymbol{\mathbf{X}} $ 的方向导数,就是协变导数的一个特例。一般的协变导数,和这个特例一样,有三个性质:
在 Loring W. Tu 的课本Differential Geometry: Connections, Curvature, and Characteristic Classes [11] 的第 13.1 节,导出协变导数的思路是先给出以上三个性质,然后证明存在且唯一存在满足这三条性质的算子,将其定义为 $\frac{D}{ \,\mathrm{d}{t} }$。如果你使用 GTM 275 作为参考书,请注意这里思路的差别。
取 $M$ 上的一个局部坐标系5$\{ \boldsymbol{\mathbf{e}} _1, \boldsymbol{\mathbf{e}} _2, \cdots, \boldsymbol{\mathbf{e}} _n\}$。给定沿着 $c(t)$ 的一个光滑切向量场 $ \boldsymbol{\mathbf{X}} =x^i(t) \boldsymbol{\mathbf{e}} _i$,其中各 $x^i(t)$ 是区间 $I$ 上的光滑函数。将光滑切场 $ \boldsymbol{\mathbf{e}} _i$ 拓展为光滑切场 $\widetilde{ \boldsymbol{\mathbf{e}} }_i$,光滑函数 $x^i$ 拓展为光滑函数 $\widetilde{x}^i$6。此时再将 $c'(t)$ 拓展为整个 $M$ 上的光滑切场 $ \boldsymbol{\mathbf{T}} =T^i\widetilde{ \boldsymbol{\mathbf{e}} }_i$。
则按定义有:
按照 GTM 275 中式(13.1)的写法,有
和式 9 是一样的。
将式 9 与Christoffel 符号的概念结合,我们还可以进一步写出给定图中协变导数的计算公式:
这样,只要知道了一个图中的 Christoffel 符号,就可以用式 11 在这个图中计算出协变导数了。
这是由 “度量相容性(见定义 3 的第二条)” 推论得出的。
1. ^ 当然,我们可以把 $ \operatorname {Im}c(t)$ 本身看成一个一维的流形,那么此时 $ \boldsymbol{\mathbf{X}} $ 就不是其切向量。我们可以考虑在这个一维流形上的一个二维向量丛,这样 $ \boldsymbol{\mathbf{X}} $ 就是这个丛上的一个截面。
2. ^ 即如果在道路上定义了两个向量场 $ \boldsymbol{\mathbf{X}} (t)$ 和 $ \boldsymbol{\mathbf{Y}} (t)$,那么任取实数 $a, b$,都有 $\frac{ \,\mathrm{d}{}} { \,\mathrm{d}{t} }( \boldsymbol{\mathbf{a \boldsymbol{\mathbf{X}} +b \boldsymbol{\mathbf{Y}} }} )=a\frac{ \,\mathrm{d}{}} { \,\mathrm{d}{t} } \boldsymbol{\mathbf{X}} +b\frac{ \,\mathrm{d}{}} { \,\mathrm{d}{t} } \boldsymbol{\mathbf{Y}} $。
3. ^ 比如三维欧几里得空间中的切向量场,可以表示为三个光滑函数的组合,每个光滑函数是一个坐标分量。
4. ^ 即如果在道路上定义了两个向量场 $ \boldsymbol{\mathbf{X}} (t)$ 和 $ \boldsymbol{\mathbf{Y}} (t)$,那么任取实数 $a, b$,都有 $\frac{D}{ \,\mathrm{d}{t} }( \boldsymbol{\mathbf{a \boldsymbol{\mathbf{X}} +b \boldsymbol{\mathbf{Y}} }} )=a\frac{D}{ \,\mathrm{d}{t} } \boldsymbol{\mathbf{X}} +b\frac{D}{ \,\mathrm{d}{t} } \boldsymbol{\mathbf{Y}} $。
5. ^ $M$ 上并非总有整体坐标系,比如说单位球面上就不可能存在处处非零的光滑切向量场,进而任何一组光滑切向量场都会有零点,进而任何一组光滑切场都不可能是整体坐标系。但是局部是可以的,因为流形是局部同胚于欧几里得空间的,取欧几里得空间里的坐标系,映射回流形上就可以。
6. ^ 即将 $ \boldsymbol{\mathbf{X}} $ 拓展为 $\widetilde{x}^i\widetilde{ \boldsymbol{\mathbf{e}} }_i$。
 
 
 
 
 
 
 
 
 
 
 
友情链接: 超理论坛 | ©小时科技 保留一切权利