贡献者: addis
首先回顾拉格朗日方程为
\begin{equation}
\frac{\mathrm{d}}{\mathrm{d}{t}} \frac{\partial L}{\partial \dot q_i} = \frac{\partial L}{\partial q_i} ~, \qquad L(q,\dot q, t) = T - V~.
\end{equation}
正则动量为 $p_i = \partial L/\partial \dot q_i $,广义力为 $ \partial L/\partial q_i $, 拉氏方程就是广义力与正则动量的牛顿第二定律。对于任何广义坐标,拉格朗日方程的形式不变。
勒让德变换后,得到哈密顿正则方程为
\begin{equation}
\dot q_i = \frac{\partial H}{\partial p_i} ~,\qquad
\dot p_i = - \frac{\partial H}{\partial q_i} ~,
\end{equation}
其中 $H(p,q) = T + V$。我们通常简记 $q_1, \dots, q_N$ 为 $q$,简记 $\dot q_1, \dots, \dot q_N$ 为 $\dot q$。
1. 正则变换
若广义坐标 $q$ 变换到另一套广义坐标 $q'$,假设变换不显含时间,每个 $q_k$ 都是新坐标的函数 $q_k(q')$,有
\begin{equation}
\dot q_i = \sum_j \frac{\partial q_i}{\partial q'_j} \dot q'_j~,
\end{equation}
所以
\begin{equation}
\frac{\partial \dot q_k}{\partial \dot q'_i} = \frac{\partial q_k}{\partial q'_i} ~.
\end{equation}
另外可见广义速度的变换也和广义坐标有关:$\dot q_i = \dot q_i(q', \dot q')$。
拉格朗日量是系统的状态量,所以 $L(q',\dot q', t) = L[q(q'),\dot q(q',\dot q'), t]$, 所以
\begin{equation}
p'_i = \frac{\partial L}{\partial \dot q'_i} = \sum_k \frac{\partial L}{\partial \dot q_k} \frac{\partial \dot q_k}{\partial \dot q'_i} = \sum_k \frac{\partial q_k}{\partial q'_i} p_k~,
\end{equation}
这就从坐标变换推出了动量变换。对于任何广义坐标以及对应的正则动量,哈密顿方程的形式不变(因为拉格朗日方程的形式不变,哈密顿方程是由拉格朗日方程推出来的),也有其他情况也不变。所有使正则方程成立的坐标叫做
正则坐标(canonical coordinates)。下面推导判断正则坐标的一般条件。
对于不显含时的物理量 $\omega(q, p)$,有(式 2 )
\begin{equation}
\dot \omega = \left\{\omega, H\right\} = \sum_i \left( \frac{\partial \omega}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial q_i} \frac{\partial \omega}{\partial p_i} \right) ~.
\end{equation}
现在若把 $H$ 看成是 $H[q'(q,p),p'(q,p)]$,
\begin{equation}
\frac{\partial H}{\partial p_i} = \sum_k \frac{\partial H}{\partial q'_k} \frac{\partial q'_k}{\partial p_i} + \frac{\partial H}{\partial p'_k} \frac{\partial p'_k}{\partial p_i} ~,
\end{equation}
\begin{equation}
\frac{\partial H}{\partial q_i} = \sum_k \frac{\partial H}{\partial q'_k} \frac{\partial q'_k}{\partial q_i} + \frac{\partial H}{\partial p'_k} \frac{\partial p'_k}{\partial q_i} ~.
\end{equation}
代入并对 $H$ 的偏微分合并同类项得
\begin{equation}
\dot \omega = \left\{\omega, H\right\} = \sum_k \left[ \frac{\partial H}{\partial q'_k} \left\{\omega, q'_k\right\} + \frac{\partial H}{\partial p'_k} \left\{\omega, p'_k\right\} \right] ~.
\end{equation}
注意泊松括号是对 $q,p$ 进行偏微分,记为 $\{ {}\}_{q,p}$。 分别代入 $\omega = q'_i, p'_i$, 得到转换坐标后的哈密顿方程的一般形式。为了保持正则方程的形式,必须要求
\begin{equation}
\left\{q'_i, q'_k\right\} _{q,p} = \left\{p'_i, p'_k\right\} _{q,p} = 0~,
\end{equation}
\begin{equation}
\left\{q'_i, p'_k\right\} _{q,p} = \delta_{ik}~,
\end{equation}
这就是
判断正则变换的一般条件。
可以证明,用任何正则坐标作为泊松括号的角标,其值都不变:
\begin{equation}
\left\{u, v\right\} _{q,p} = \sum_i \left( \frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial v}{\partial q_i} \frac{\partial u}{\partial p_i} \right) ~.
\end{equation}
其中
\begin{equation}
\frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} = \sum_j \left( \frac{\partial u}{\partial q'_j} \frac{\partial q'_j}{\partial q_i} + \frac{\partial u}{\partial p'_j} \frac{\partial p'_j}{\partial q_i} \right) \sum_k \left( \frac{\partial v}{\partial q'_k} \frac{\partial q'_k}{\partial p_i} + \frac{\partial v}{\partial p'_k} \frac{\partial p'_k}{\partial p_i} \right) ~,
\end{equation}
\begin{equation}
\frac{\partial v}{\partial q_i} \frac{\partial u}{\partial p_i} = \sum_k \left( \frac{\partial v}{\partial q'_k} \frac{\partial q'_k}{\partial q_i} + \frac{\partial v}{\partial p'_k} \frac{\partial p'_k}{\partial q_i} \right) \sum_j \left( \frac{\partial u}{\partial q'_j} \frac{\partial q'_j}{\partial p_i} + \frac{\partial u}{\partial p'_j} \frac{\partial p'_j}{\partial p_i} \right) ~.
\end{equation}
现在我们要得到 $ \left\{u, v\right\} _{q',p'} = \sum_i \left( \frac{\partial u}{\partial q'_i} \frac{\partial v}{\partial p'_i} - \frac{\partial v}{\partial q'_i} \frac{\partial u}{\partial p'_i} \right) $, 可以把上两式代入式 12 后对 $ \frac{\partial u}{\partial q'} \frac{\partial v}{\partial p'} $ 和 $ \frac{\partial v}{\partial q'_i} \frac{\partial u}{\partial p'_i} $ 合并同类项,得
\begin{equation} \begin{aligned}
\left\{u, v\right\} _{q,p} & = \sum_{jk} \frac{\partial u}{\partial q'_j} \frac{\partial v}{\partial p'_k} \sum_i \left( \frac{\partial q'_j}{\partial q_i} \frac{\partial p'_k}{\partial p_i} - \frac{\partial p'_k}{\partial q_i} \frac{\partial q'_j}{\partial p_i} \right) \\
& -\sum_{jk} \frac{\partial v}{\partial q'_k} \frac{\partial u}{\partial p'_j} \sum_i \left( \frac{\partial q'_k}{\partial q_i} \frac{\partial p'_j}{\partial p_i} - \frac{\partial p'_j}{\partial q_i} \frac{\partial q'_k}{\partial p_i} \right) \\
&= \sum_{jk} \frac{\partial u}{\partial q'_j} \frac{\partial v}{\partial p'_k} \left\{q'_j, p'_k\right\} _{q,p} - \sum_{jk} \frac{\partial v}{\partial q'_k} \frac{\partial u}{\partial p'_j} \left\{q'_k, p'_j\right\} _{q,p}~.
\end{aligned} \end{equation}
代入正则坐标条件(
式 11 ),得
\begin{equation} \begin{aligned}
\left\{u, v\right\} _{q,p} & = \sum_{jk} \frac{\partial u}{\partial q'_j} \frac{\partial v}{\partial p'_k} \delta_{jk} - \sum_{jk} \frac{\partial v}{\partial q'_k} \frac{\partial u}{\partial p'_j} \delta_{jk} = \sum_j \left( \frac{\partial u}{\partial q'_j} \frac{\partial v}{\partial p'_j} - \frac{\partial v}{\partial q'_j} \frac{\partial u}{\partial p'_j} \right) \\
&= \left\{u, v\right\} _{q',p'}~.
\end{aligned} \end{equation}
证毕。
致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择大量广告以及内容付费等。 因此,我们请求广大读者
热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 20 元,我们一周就能脱离亏损, 并在接下来的一年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。