泊松括号

             

  • 本词条处于草稿阶段.
预备知识 哈密顿正则方程

   给定函数 $u(q, p, t)$ 和 $v(q, p, t)$,定义泊松括号为

\begin{equation} \left\{u, v\right\} = \sum_i \frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial v}{\partial q_i} \frac{\partial u}{\partial p_i} \end{equation}
容易证明泊松括号满足
\begin{equation} \left\{v, u\right\} = - \left\{u, v\right\} \end{equation}

1. 泊松括号与守恒量

   对任意不显含时的物理量 $\omega (q,p)$ 都有

\begin{equation} \dot \omega = \sum_i \left( \frac{\partial \omega}{\partial q_i} \dot q_i + \frac{\partial \omega}{\partial p_i} \dot p_i \right) = \sum_i \left( \frac{\partial \omega}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial q_i} \frac{\partial \omega}{\partial p_i} \right) = \left\{\omega, H\right\} \end{equation}
所以若泊松括号恒等于零,则该物理量守恒.

   同理,当 $\omega (q,p,t)$ 显含时间时有

\begin{equation} \dot \omega = \left\{\omega, H\right\} + \frac{\partial \omega}{\partial t} \end{equation}

   量子力学中的对易算符对应泊松括号.该式对应量子力学中的算符平均值演化方程.

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

广告位

投放详情

         

© 小时科技 保留一切权利