球坐标系中的偏微分算符

                     

贡献者: addis; certain_pineapple

预备知识 1 正交曲线坐标系中的矢量算符

1. 矢量算符

   球坐标系中标量函数 $u(r, \theta, \phi)$ 和矢量函数 $ \boldsymbol{\mathbf{v}} (r, \theta, \phi)$ 的梯度,散度,旋度和拉普拉斯算符的公式如下。其中 $r$ 是极径,$\theta $ 是极角,$\phi $ 是方位角。推导见下文。

推导

   位置矢量的微分可以表示为

\begin{equation} \,\mathrm{d}{ \boldsymbol{\mathbf{r}} } = \hat{\boldsymbol{\mathbf{r}}} \,\mathrm{d}{r} + r \hat{\boldsymbol{\mathbf{\theta}}} \,\mathrm{d}{\theta} + r\sin\theta \hat{\boldsymbol{\mathbf{\phi}}} \,\mathrm{d}{\phi} ~. \end{equation}
未完成:该式的推导应该在正交曲线坐标系中完成
。 代入式 3 式 8 即可完成推导。

2. 拉普拉斯算符的径向和角向分解

   为了书写方便小时百科中定义两个算符 $ \boldsymbol{\nabla}^2 _r$ 和 $ \boldsymbol{\nabla}^2 _\Omega$ 满足

\begin{equation} \boldsymbol{\nabla}^2 = \boldsymbol{\nabla}^2 _r + \frac{ \boldsymbol{\nabla}^2 _\Omega}{r^2}~. \end{equation}
其中 $ \boldsymbol{\nabla}^2 _r$ 只对 $r$ 求偏导(式 4 右边第一项),$ \boldsymbol{\nabla}^2 _\Omega$ 只对 $\theta,\phi$ 求偏导(式 4 右边后两项)。该分解有助于使用分离变量法求解球坐标系中的拉普拉斯方程

   $ \boldsymbol{\nabla}^2 _\Omega$ 还可以进一步分解为两个矢量算符的点乘

\begin{equation} \boldsymbol{\nabla}^2 _\Omega = \boldsymbol\nabla _\Omega \boldsymbol\cdot \boldsymbol\nabla _\Omega~. \end{equation}
其中
\begin{equation} \begin{aligned} \boldsymbol\nabla _\Omega &= \boldsymbol{\mathbf{r}} \boldsymbol\times \boldsymbol\nabla \\ &= \hat{\boldsymbol{\mathbf{\phi}}} \frac{\partial}{\partial{\theta}} - \hat{\boldsymbol{\mathbf{\theta}}} \frac{1}{\sin\theta} \frac{\partial}{\partial{\phi}} \\ &= - \left(\sin\phi \frac{\partial}{\partial{\theta}} + \cot\theta\cos\phi \frac{\partial}{\partial{\phi}} \right) \hat{\boldsymbol{\mathbf{x}}} + \left(\cos\phi \frac{\partial}{\partial{\theta}} - \cot\theta \sin\phi \frac{\partial}{\partial{\phi}} \right) \hat{\boldsymbol{\mathbf{y}}} + \frac{\partial}{\partial{\phi}} \hat{\boldsymbol{\mathbf{z}}} ~. \end{aligned} \end{equation}
该分解在量子力学中有应用,见 “球坐标系中的角动量算符”。

   推导:只需要把 $ \boldsymbol{\mathbf{r}} = r \hat{\boldsymbol{\mathbf{r}}} $ 和式 1 代入 $ \boldsymbol{\mathbf{r}} \boldsymbol\times \boldsymbol\nabla $,再把结果换到直角坐标系中即可。

3. 其他偏微分算符

预备知识 2 复合函数的偏导、链式法则(多元微积分)

   把 $r,\theta,\phi$ 看成直角坐标 $x,y,z$ 的函数(式 2 ),则有

\begin{equation} \frac{\partial r}{\partial x} = \sin\theta\cos\phi, \qquad \frac{\partial r}{\partial y} = \sin\theta\sin\phi, \qquad \frac{\partial r}{\partial z} = \cos\theta~. \end{equation}
\begin{equation} \frac{\partial \theta}{\partial x} = \frac{\cos\theta\cos\phi}{r}, \qquad \frac{\partial \theta}{\partial y} = \frac{\cos\theta\sin\phi}{r}, \qquad \frac{\partial \theta}{\partial z} = -\frac{\sin\theta}{r}~. \end{equation}
\begin{equation} \frac{\partial \phi}{\partial x} = -\frac{\sin\phi}{r}, \qquad \frac{\partial \phi}{\partial y} = \frac{\cos\phi}{r}, \qquad \frac{\partial \phi}{\partial z} = 0~. \end{equation}
根据多元函数的链式法则
\begin{equation} \frac{\partial}{\partial{x}} = \sin\theta\cos\phi \frac{\partial}{\partial{r}} + \frac{\cos\theta\cos\phi}{r} \frac{\partial}{\partial{\theta}} -\frac{\sin\phi}{r} \frac{\partial}{\partial{\phi}} ~, \end{equation}
\begin{equation} \frac{\partial}{\partial{y}} = \sin\theta\sin\phi \frac{\partial}{\partial{r}} + \frac{\cos\theta\sin\phi}{r} \frac{\partial}{\partial{\theta}} +\frac{\cos\phi}{r} \frac{\partial}{\partial{\phi}} ~, \end{equation}
\begin{equation} \frac{\partial}{\partial{z}} = \cos\theta \frac{\partial}{\partial{r}} - \frac{\sin\theta}{r} \frac{\partial}{\partial{\theta}} ~. \end{equation}

基矢的微分

   在直角坐标系中,我们习惯了基矢不随坐标的变化而变化,也即有:

\begin{equation} \frac{\partial \hat{\boldsymbol{\mathbf{x}}} }{\partial x} = \frac{\partial \hat{\boldsymbol{\mathbf{x}}} }{\partial y} = \frac{\partial \hat{\boldsymbol{\mathbf{x}}} }{\partial z} = \frac{\partial \hat{\boldsymbol{\mathbf{y}}} }{\partial x} = \frac{\partial \hat{\boldsymbol{\mathbf{y}}} }{\partial y} = \frac{\partial \hat{\boldsymbol{\mathbf{y}}} }{\partial z} = \frac{\partial \hat{\boldsymbol{\mathbf{z}}} }{\partial x} = \frac{\partial \hat{\boldsymbol{\mathbf{z}}} }{\partial y} = \frac{\partial \hat{\boldsymbol{\mathbf{z}}} }{\partial z} =0~. \end{equation}

   但到了球坐标系中,由于基矢量是坐标依赖的,以 $ \hat{\boldsymbol{\mathbf{r}}} $ 为例:

\begin{equation} \hat{\boldsymbol{\mathbf{r}}} = \frac{x}{r} \hat{\boldsymbol{\mathbf{x}}} + \frac{y}{r} \hat{\boldsymbol{\mathbf{y}}} + \frac{z}{r} \hat{\boldsymbol{\mathbf{z}}} =\sin\theta\cos\phi \hat{\boldsymbol{\mathbf{x}}} + \sin\theta\sin\phi \hat{\boldsymbol{\mathbf{y}}} + \cos\theta \hat{\boldsymbol{\mathbf{z}}} ~. \end{equation}

   可以明显看出 $ \hat{\boldsymbol{\mathbf{r}}} $ 依赖于坐标 $\theta$ 和 $\phi$,这说明诸如 $ \frac{\partial \hat{\boldsymbol{\mathbf{r}}} }{\partial \theta} $ 之类的项将不为 $0$。一种简单但繁琐的方式是将其全部转入直角坐标系下计算,在此我们直接给出结果:

\begin{equation} \frac{\partial \hat{\boldsymbol{\mathbf{r}}} }{\partial r} = 0, \qquad \frac{\partial \hat{\boldsymbol{\mathbf{r}}} }{\partial \theta} = \hat{\boldsymbol{\mathbf{\theta}}} , \qquad \frac{\partial \hat{\boldsymbol{\mathbf{r}}} }{\partial \phi} = \sin\theta \hat{\boldsymbol{\mathbf{\phi}}} ~. \end{equation}
\begin{equation} \frac{\partial \hat{\boldsymbol{\mathbf{\theta}}} }{\partial r} = 0, \qquad \frac{\partial \hat{\boldsymbol{\mathbf{\theta}}} }{\partial \theta} = - \hat{\boldsymbol{\mathbf{r}}} , \qquad \frac{\partial \hat{\boldsymbol{\mathbf{\theta}}} }{\partial \phi} = \cos\theta \hat{\boldsymbol{\mathbf{\phi}}} ~. \end{equation}
\begin{equation} \frac{\partial \hat{\boldsymbol{\mathbf{\phi}}} }{\partial r} = 0, \qquad \frac{\partial \hat{\boldsymbol{\mathbf{\phi}}} }{\partial \theta} = 0, \qquad \frac{\partial \hat{\boldsymbol{\mathbf{\phi}}} }{\partial \phi} = -\sin\theta \hat{\boldsymbol{\mathbf{r}}} - \cos\theta \hat{\boldsymbol{\mathbf{\theta}}} ~. \end{equation}

                     

© 小时科技 保留一切权利