贡献者: addis
1. 比耐公式
1我们来看 “中心力场问题” 中得到的两条运动方程(式 10 和式 9 )
\begin{equation}
\ddot{r} - r \dot\theta^2 = F(r)/m ~,
\end{equation}
\begin{equation}
mr^2\dot \theta = L ~.
\end{equation}
为了得到极坐标中 $r(\theta)$ 的微分方程(
轨道方程),我们以下用
式 2 消去
式 1 中的 $t$。首先可以把 $r$ 看做复合函数 $r[\theta(t)]$,再用
链式法则处理
式 1 的第一项
\begin{equation} \begin{aligned}
\ddot{r} & = \frac{\mathrm{d}}{\mathrm{d}{t}} \left( \frac{\mathrm{d}{r}}{\mathrm{d}{t}} \right) = \frac{\mathrm{d}}{\mathrm{d}{t}} \left( \frac{\mathrm{d}{r}}{\mathrm{d}{\theta}} \frac{\mathrm{d}{\theta}}{\mathrm{d}{t}} \right) = \frac{\mathrm{d}}{\mathrm{d}{\theta}} \left( \frac{\mathrm{d}{r}}{\mathrm{d}{\theta}} \right) \left( \frac{\mathrm{d}{\theta}}{\mathrm{d}{t}} \right) ^2 + \frac{\mathrm{d}{r}}{\mathrm{d}{\theta}} \frac{\mathrm{d}^{2}{\theta}}{\mathrm{d}{t}^{2}} \\
& = \frac{\mathrm{d}^{2}{r}}{\mathrm{d}{\theta}^{2}} \left( \frac{\mathrm{d}{\theta}}{\mathrm{d}{t}} \right) ^2 + \frac{\mathrm{d}{r}}{\mathrm{d}{\theta}} \frac{\mathrm{d}}{\mathrm{d}{\theta}} \left( \frac{\mathrm{d}{\theta}}{\mathrm{d}{t}} \right) \frac{\mathrm{d}{\theta}}{\mathrm{d}{t}} ~,
\end{aligned} \end{equation}
然后把
式 2 代入
式 1 消去所有 $\dot\theta = \mathrm{d}{\theta}/\mathrm{d}{t} $,得到 $r$ 关于 $\theta$ 的微分方程
\begin{equation}
\frac{\mathrm{d}^{2}{r}}{\mathrm{d}{\theta}^{2}} \left(\frac{L}{r^2} \right) ^2 + \frac{\mathrm{d}{r}}{\mathrm{d}{\theta}} \frac{\mathrm{d}}{\mathrm{d}{\theta}} \left(\frac{L}{r^2} \right) \frac{L}{r^2} - r \left(\frac{L}{r^2} \right) ^2 = m F(r)~.
\end{equation}
即
\begin{equation}
\frac{\mathrm{d}^{2}{r}}{\mathrm{d}{\theta}^{2}} + r^2 \frac{\mathrm{d}{r}}{\mathrm{d}{\theta}} \frac{\mathrm{d}}{\mathrm{d}{\theta}} \left(\frac{1}{r^2} \right) - r = \frac{m r^4}{L^2} F(r)~,
\end{equation}
这就是轨道方程。这个方程比较复杂,但可以通过换元法 化为十分简洁的形式。令
\begin{equation}
u \equiv \frac{1}{r}~.
\end{equation}
代入
式 5 , 得到 $u$ 关于 $\theta $ 的微分方程
\begin{equation}
\frac{\mathrm{d}^{2}{u}}{\mathrm{d}{\theta}^{2}} + u = -\frac{m}{L^2 u^2} F \left(\frac 1u \right) ~.
\end{equation}
这是一个
阶常系数非齐次微分方程,被称为
比耐公式(Binet equation)。
在开普勒问题中,相互作用势为 $V(\rho)=-GMm/r$,可以证明此时轨道的形状是圆锥曲线的一种,详见 “开普勒第一定律的证明”。
2. 变形为一阶方程
将式 7 两边同乘 $ \mathrm{d}{u}/\mathrm{d}{\theta} $,再对 $\theta$ 作积分,可以得到一阶的微分方程:
\begin{equation}
\left(\frac{ \,\mathrm{d}{u} }{ \,\mathrm{d}{\theta} } \right) ^2+u^2=-\frac{2m}{L^2}V \left(\frac{1}{u} \right) +\frac{2 m E}{L^2}~.
\end{equation}
其中最后一项 $2mE/L^2$ 是积分过程中产生的常量,并且可以验证 $E$ 就是系统的总能量。有了一阶微分方程之后,就可以分离变量法进行积分,求解 $u$ 关于 $\theta$ 的函数,即求解轨道形状。
1. ^ 参考 Wikipedia 相关页面。