贡献者: addis; 赵淦是
要借助复数证明三角恒等式,我们一般需要构造具有以下形式的复数: $$w=\cos \alpha+ \mathrm{i} \sin\alpha~.$$
这类复数具有许多好的性质,我们熟知的有:
此外,我们再引入另外两条常用的性质:
$$\begin{aligned} 1-(\cos\alpha+ \mathrm{i} \sin\alpha)^n&=1-\left(\cos{\frac{n\alpha}2+ \mathrm{i} \sin{\frac{n\alpha}2}}\right)^{2}\\ &=1-\left(\cos^2{\frac{n\alpha}2}-\sin^2{\frac{n\alpha}2}+2 \mathrm{i} \sin{\frac{n\alpha}2}\cos{\frac{n\alpha}2}\right)\\ &=2\sin^2{\frac{n\alpha}2}-2 \mathrm{i} \sin{\frac{n\alpha}2}\cos{\frac{n\alpha}2}\\ &=-2 \mathrm{i} \sin{\frac{n\alpha}2}\left(\cos{\frac{n\alpha}2}+ \mathrm{i} \sin{\frac{n\alpha}2}\right) ~. \end{aligned}$$
故:
同理可得:
令 $\alpha=\beta$,得: $$\sum_{k=1}^n\sin k\alpha=\frac{\sin{\frac{(n+1)\alpha}2}\sin{\frac{n\alpha}{2}}}{\sin{\frac{\alpha}2}}~,$$ $$\sum_{k=1}^n\cos k\alpha=\frac{\cos{\frac{(n+1)\alpha}2}\sin{\frac{n\alpha}{2}}}{\sin{\frac{\alpha}2}}~.$$
可以推知:
$\displaystyle{\cos\frac{\pi}{7}+\cos\frac{3\pi}{7}+\cos\frac{5\pi}{7}=\frac{1}{2}}~,$
$\displaystyle{\cos\frac{\pi}{9}+\cos\frac{5\pi}{9}+\cos\frac{7\pi}{9}=0}~.$
要证明与三角函数有关的连乘式,我们需要考虑多项式的分解,例如: $$z^5-1=(z-1)(z^4+z^3+z^2+z+1)~.$$
记 $\displaystyle{w=\cos\frac{\pi}5+ \mathrm{i} \sin\frac{\pi}5}$,$z^5-1=0$ 有 $w^2,w^4,w^6,w^8,w^{10}$ 五个根,而 $w^{10}=1$,于是有: $$z^4+z^3+z^2+z+1=(z-w^2)(z-w^4)(z-w^6)(z-w^8)~.$$
我们发现,如果我们代入 $z=1$,就能利用上述的式 3 ,得到关于 $\sin$ 的连乘式;如果我们代入 $z=-1$,就能利用上述的式 4 ,得到关于 $\cos$ 的连乘式
下面我们具体讨论以下三类不同的方程: $$\begin{aligned} z^{2k-1}+1&=0~,\\z^{2k-1}-1&=0~, \\z^{2k}-1&=0~. \end{aligned}$$
记 $\displaystyle{w=\cos\frac{\pi}{2m-1}+ \mathrm{i} \sin\frac{\pi}{2m-1}}$,则 $w,w^3\cdots,w^{4m-3}$ 是 $z^{2m-1}+1=0$ 的 $2m-1$ 个根
又因为 $w^{2m-1}=-1$,于是 $w\cdots ,w^{2m-3},w^{2m+1}\cdots ,w^{4m-3}$ 是 $z^{2m-1}+1=0$ 的 $2m-2$ 个虚根
由因式分解 $z^{2m-1}+1=(z+1)(z^{2m-2}-z^{2m-3}+\cdots+z^{2}-z+1)$,知: $$z^{2m-2}-z^{2m-3}+\cdots-z+1=(z-w)\cdots(z-w^{2m-3})(z-w^{2m+1})\cdots(z-w^{4m-3})~.$$
代入 $z=1$,并置 $\mu=w^{\frac12}$ 得:
$$\begin{aligned} 1&=(1-w)\cdots(1-w^{2m-3})(1-w^{2m+1})\cdots(1-w^{4m-3})\\&=\prod_{\substack{k=1\\k\neq m}}^{2m-1}(-2 \mathrm{i} )\mu^{2k-1}\sin\frac{(2k-1)\pi}{4m-2}\\&=(-2 \mathrm{i} )^{2m-2}{\mu}^{(2m-1)(2m-2)}\prod_{k=1}^{2m-1}\sin{\frac{(2k-1)\pi}{4m-2}}\\ &=4^{m-1}(-1)^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{2m-1}\sin{\frac{(2k-1)\pi}{4m-2}}\\ &=4^{m-1}\prod_{k=1}^{2m-1}\sin{\frac{(2k-1)\pi}{4m-2}} ~. \end{aligned}$$
所以:
又因为 $\displaystyle{\sin\frac{(2k-1)\pi}{4m-2}=\sin\frac{(4m-2k-1)\pi}{4m-2}}$,故:
代入 $z=-1$ 得:
又因为 $\displaystyle{\cos\frac{(2k-1)\pi}{4m-2}=-\cos\frac{(4m-2k-1)}{4m-2}}$,故:
于是:
记 $\displaystyle{w=\cos\frac{\pi}{2m-1}+ \mathrm{i} \sin\frac{\pi}{2m-1}}$,则 $w^2,w^4\cdots,w^{4m-2}$ 是 $z^{2m-1}-1=0$ 的 $2m-1$ 个根
又因为 $w^{4m-2}=1$,于是 $w^2,w^4\cdots ,w^{4m-4}$ 是 $z^{2m-1}-1=0$ 的 $2m-2$ 个虚根
由因式分解 $\displaystyle{z^{2m-1}-1=(z-1)(z^{2m-2}+z^{2m-3}+\cdots+z^{2}+z+1)}$,知: $$z^{2m-2}+z^{2m-3}+\cdots+z+1=(z-w^2)\cdots(z-w^{4m-4})~.$$
代入 $z=1$,得: $$\begin{aligned} 2m-1&=(1-w^2)(1-w^4)\cdots(1-w^{4m-4})\\ &=\left(-2 \mathrm{i} \mu^2\sin\frac{2\pi}{4m-2}\right)\left(-2 \mathrm{i} \mu^4\sin\frac{4\pi}{4m-2}\right)\cdots\left[-2 \mathrm{i} \mu^{4m-4}\sin\frac{(4m-4)\pi}{4m-2}\right]\\ &=(-2 \mathrm{i} )^{2m-2}\mu^{(2m-1)(2m-2)}\prod_{k=1}^{2m-2}\sin\frac{k\pi}{2m-1}\\ &=4^{m-1}(-1)^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{2m-2}\sin\frac{k\pi}{2m-1}~. \end{aligned} $$
于是:
代入 $z=-1$,得:
$\begin{aligned} 1&=(-1-w^2)(-1-w^4)\cdots(1-w^{4m-4})\\ &=(-1)^{2m-2}(1+w^2)(1+w^4)\cdots(1+w^{4m-4})\\ &=\left(2\mu^2\cos\frac{2\pi}{4m-2}\right)\left(2\mu^4\cos\frac{4\pi}{4m-2}\right)\cdots\left[2\mu^{4m-4}\cos\frac{(4m-4)\pi}{4m-2}\right]\\ &=2^{2m-2}\mu^{(2m-1)(2m-2)}\prod_{k=1}^{2m-2}\cos\frac{k\pi}{2m-1}\\ &=4^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{2m-2}\cos\frac{k\pi}{2m-1}~. \end{aligned}$
故:
记 $\displaystyle{w=\cos\frac{\pi}{2m}+ \mathrm{i} \sin\frac{\pi}{2m}}$,则 $w^2,w^4,\dots ,w^{4m}$ 是 $z^{2m}-1=0$ 的 $2m$ 个根
又因为 $w^{2m}=-1\,,w^{4m}=1$,于是 $w^2\cdots,w^{2m-2},w^{2m+2}\cdots,w^{4m-2}$ 是 $z^{2m}-1=0$ 的 $2m-2$ 个虚根
由因式分解 $z^{2m}-1=(z^2-1)(z^{2m-2}+\cdots+z^4+z^2+1)$,知: $$z^{2m-2}+\cdots+z^4+z^2+1=(z-w^2)\cdots(z-w^{2m-2})(z-w^{2m+2})\cdots(z-w^{4m-2})~.$$
代入 $z=1$,得:
$$\begin{aligned} m&=(1-w^2)\cdots(1-w^{2m-2})(1-w^{2m+2})\cdots(1-w^{4m-2})\\ &=\prod_{\substack{k=1\\k\neq m}}^{2m-1}(-2 \mathrm{i} )\mu^{2k}\frac{2k\pi}{4m}\\ &=(-2 \mathrm{i} )^{2m-2}\mu^{2m(2m-2)}\prod_{k=1}^{2m-1}\sin\frac{k\pi}{2m}\\ &=2^{2m-2}(-1)^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{2m-1}\sin\frac{k\pi}{2m}\\ &=4^{m-1}\prod_{k=1}^{2m-1}\sin\frac{k\pi}{2m}~, \end{aligned}$$
于是:
代入 $z=-1$,得:
$$\begin{aligned} m&=(-1-w^2)\cdots(-1-w^{2m-2})(-1-w^{2m+2})\cdots(-1-w^{4m-2})\\ &=(-1)^{2m-2}(1+w^2)\cdots(1+w^{2m-2})(1+w^{2m+2})\cdots(1+w^{4m-2})\\ &=\prod_{\substack{k=1\\k\neq m}}^{2m-1}2\mu^{2k}\cos\frac{2k\pi}{4m}\\ &=2^{2m-2}\mu^{2m(m-2)}\prod_{k=1}^{m-1}\cos\frac{k\pi}{2m}\prod_{k=m+1}^{2m-1}\cos\frac{k\pi}{2m}\\ &=4^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{m-1}\cos\frac{k\pi}{2m}\prod_{k=m+1}^{2m-1}\cos\frac{k\pi}{2m} ~. \end{aligned}$$
又因为 $\displaystyle{\cos\frac{k\pi}{2m}=-\sin\frac{(m+k)\pi}{2m}}$,所以:
$$\begin{aligned} m&=4^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{m-1}\cos\frac{k\pi}{2m}\prod_{k=m+1}^{2m-1}\cos\frac{k\pi}{2m}\\ &=(-1)^{m-1}4^{m-1} \cos\left(m-1\right) \pi\prod_{k=1}^{m-1}\sin\frac{k\pi}{2m}\cos\frac{k\pi}{2m}\\ &=2^{m-1}\prod_{k=1}^{m-1}\sin\frac{k\pi}{m}~. \end{aligned}$$
故:
实际上,式 14 不过是式 11 和式 13 的更一般的形式。
 
 
 
 
 
 
 
 
 
 
 
友情链接: 超理论坛 | ©小时科技 保留一切权利