矩阵指数

             

1. 定义

   实数域上的指数函数 $ \mathrm{e} ^x$ 可以进行 Maclaulin 展开:

\begin{equation} \mathrm{e} ^x=\sum\limits_{n=0}^\infty \frac{x^n}{n!} \end{equation}

   展开式使得我们只需要用 $x$ 的幂就可以表示指数 $ \mathrm{e} ^x$.我们把这一点应用到矩阵中,就可以用方阵的幂来定义出矩阵的指数:

定义 1 矩阵指数

   给定方阵 $ \boldsymbol{\mathbf{M}} $,定义

\begin{equation} \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }=\sum_{n=0}^\infty \frac{ \boldsymbol{\mathbf{M}} ^n}{n!} \end{equation}
并称之为矩阵 $ \boldsymbol{\mathbf{M}} $ 的指数(matrix exponential).其中对于任意方阵 $ \boldsymbol{\mathbf{M}} $,都有 $ \boldsymbol{\mathbf{M}} ^0= \boldsymbol{\mathbf{I}} $,$ \boldsymbol{\mathbf{I}} $ 是单位矩阵.

   矩阵指数在常微分方程中非常常用,是用来解线性齐次方程组的利器.一个矩阵的指数本身还是一个矩阵.

2. 矩阵指数的性质

相似变换的统一

   由过渡矩阵可知,如果矩阵 $ \boldsymbol{\mathbf{M}} $ 在某基下表示一个线性变换,那么当基按过渡矩阵 $ \boldsymbol{\mathbf{Q}} $ 改变时,同一个线性变换的矩阵表示就变为 $ \boldsymbol{\mathbf{Q}} ^{-1} \boldsymbol{\mathbf{M}} \boldsymbol{\mathbf{Q}} $.在原基下,$ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }$ 可以表示另一个线性变换,而它在 $ \boldsymbol{\mathbf{Q}} $ 下的变换是

\begin{equation} \boldsymbol{\mathbf{Q}} ^{-1} \mathrm{e} ^{ \boldsymbol{\mathbf{M}} } \boldsymbol{\mathbf{Q}} = \mathrm{e} ^{ \boldsymbol{\mathbf{Q}} ^{-1} \boldsymbol{\mathbf{M}} \boldsymbol{\mathbf{Q}} } \end{equation}

   也就是说,$ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }$ 所表示的变换,在基变换的时候,其矩阵表示的变换相当于给 $ \boldsymbol{\mathbf{M}} $ 变换后再取矩阵指数.这意味着我们也可以定义线性变换的指数——也可以反过来说,这是因为我们可以定义线性变换的指数,方式也是使用 Maclaulin 级数.

   事实上,如果 $\mathcal{T}_i$ 表示若干线性变换,我们可以用映射的复合来定义线性变换的乘法:那么对于任意向量 $ \boldsymbol{\mathbf{v}} $,$\mathcal{T}^n_i( \boldsymbol{\mathbf{v}} )=\mathcal{T}_i(\mathcal{T}^{n-1}_i( \boldsymbol{\mathbf{v}} ))$,其中 $\mathcal{T}_i^1=\mathcal{T}_i$.类似地,也可以定义线性变换的加法:$(\mathcal{T}_1+\mathcal{T}_2)( \boldsymbol{\mathbf{v}} )=\mathcal{T}_1( \boldsymbol{\mathbf{v}} )+\mathcal{T}_2( \boldsymbol{\mathbf{v}} )$.这样,有了乘法和加法,就可以计算线性变换的级数了,而 Maclaulin 级数就可以定义为其指数:

\begin{equation} \mathrm{e} ^\mathcal{T}=\sum\limits_{n=0}^\infty \frac{\mathcal{T}^n}{n!} \end{equation}
其中 $\mathcal{T}^0$ 是恒等变换,对应单位矩阵.

   式 3 意味着,如果 $ \boldsymbol{\mathbf{M}} $ 是 $\mathcal{T}$ 在某基下的矩阵表示,那么 $ \mathrm{e} ^\mathcal{T}$ 在该基下的矩阵表示就是 $ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }$.

运算性质

   设 $ \boldsymbol{\mathbf{M}} , \boldsymbol{\mathbf{N}} \in \operatorname {gl}(n, \mathbb{F})$,$a, b\in\mathbb{F}$,则容易得出以下性质:

   如果 $ \boldsymbol{\mathbf{MN}} = \boldsymbol{\mathbf{NM}} $,那么我们有 $ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} } \mathrm{e} ^{ \boldsymbol{\mathbf{N}} }= \mathrm{e} ^{ \boldsymbol{\mathbf{M}} + \boldsymbol{\mathbf{N}} }$.

   $ \mathrm{e} ^{( \boldsymbol{\mathbf{M}} ^{\mathrm{T}} )}=( \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }) ^{\mathrm{T}} $,$ \mathrm{e} ^{( \boldsymbol{\mathbf{M}} ^\dagger)}=({ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }})^\dagger$.

定理 1 矩阵指数的行列式与矩阵的迹

   对于 $ \boldsymbol{\mathbf{M}} \in \operatorname {gl}(n, \mathbb{F})$,有 $ \left\lvert \mathrm{e} ^{ \boldsymbol{\mathbf{M}} } \right\rvert = \mathrm{e} ^{ \operatorname {tr}( \boldsymbol{\mathbf{M}} )}$.即:矩阵指数的行列式,等于矩阵迹的指数.

   证明

   我们只需要考虑上三角矩阵 $ \boldsymbol{\mathbf{M}} $ 的情况即可,因为任何矩阵总可以通过相似变换变成上三角矩阵.此时,$ \boldsymbol{\mathbf{M}} $ 的迹就是主对角元素之和,而 $ \boldsymbol{\mathbf{M}} ^k$ 的第 $i$ 个主对角元素都是 $ \boldsymbol{\mathbf{M}} $ 的第 $i$ 个主对角元素的 $k$ 次方.

   如果只看主对角元素,那么可以记 $ \boldsymbol{\mathbf{M}} $ 为 $(m_1, m_2,\cdots,m_n)$,其中各 $m_i$ 是 $ \boldsymbol{\mathbf{M}} $ 的第 $i$ 个元素.类似地,$ \boldsymbol{\mathbf{M}} ^k$ 就可以记为 $(m_1^k, m_2^k,\cdots,m_n^k)$.代入矩阵指数的定义式,可得 $ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }$ 的对角线元素为 $( \mathrm{e} ^m_1, \mathrm{e} ^m_2,\cdots, \mathrm{e} ^m_n)$.

   由于上三角矩阵的乘积还是上三角矩阵,可知 $ \mathrm{e} ^{ \boldsymbol{\mathbf{M}} }$ 是上三角矩阵,因此 $ \left\lvert \mathrm{e} ^{ \boldsymbol{\mathbf{M}} } \right\rvert = \mathrm{e} ^m_1\times \mathrm{e} ^m_2\times\cdots\times \mathrm{e} ^m_n= \mathrm{e} ^{ \mathrm{e} ^m_1+ \mathrm{e} ^m_2+\cdots+ \mathrm{e} ^m_n}= \mathrm{e} ^{ \operatorname {tr}( \boldsymbol{\mathbf{M}} )}$.

   证毕

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

广告位

投放详情

         

© 小时科技 保留一切权利