二阶不含时微扰理论(量子力学)

                     

贡献者: addis

  • 本文处于草稿阶段。
预备知识 一阶不含时微扰理论(量子力学)

\begin{equation} E_n^2 = \sum_{m}^{E_m\ne E_n} \frac{ \left\lvert \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^0 \right\rangle \right\rvert ^2}{E_n^0-E_m^0}~. \end{equation}
注意 $\psi_n^0$ 必须取好量子态。

1. 推导

   类似于一阶微扰的推导(子节 4 ),若式 6 展开括号后仅保留 $\lambda^2$ 的项,得

\begin{equation} H^0\psi_n^2 + H^1\psi_n^1 = E_n^0\psi_n^2 + E_n^1\psi_n^1 + E_n^2\psi_n^0~. \end{equation}
两边左乘任意 $\psi_m^0$ 得
\begin{equation} \left\langle \psi_m^0 \middle| H^0 \middle| \psi_n^2 \right\rangle + \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^1 \right\rangle = E_n^0 \left\langle \psi_m^0 \middle| \psi_n^2 \right\rangle + E_n^1 \left\langle \psi_m^0 \middle| \psi_n^1 \right\rangle + \delta_{m,n}E_n^2~. \end{equation}
其中
\begin{equation} \left\langle \psi_m^0 \middle| H^0 \middle| \psi_n^2 \right\rangle = \left\langle H^0\psi_m^0 \middle| \psi_n^2 \right\rangle = E_m^0 \left\langle \psi_m^0 \middle| \psi_n^2 \right\rangle ~. \end{equation}
代入式 3
\begin{equation} \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^1 \right\rangle = (E_n^0-E_m^0) \left\langle \psi_m^0 \middle| \psi_n^2 \right\rangle + E_n^1 \left\langle \psi_m^0 \middle| \psi_n^1 \right\rangle + \delta_{m,n}E_n^2~. \end{equation}
我们要求该式对所有可能的 $m,n$ 都成立。

非简并

   考虑对角元($m=n$),式 5 要求

\begin{equation} E_n^2 = \left\langle \psi_n^0 \middle| H^1 \middle| \psi_n^1 \right\rangle - E_n^1 \left\langle \psi_n^0 \middle| \psi_n^1 \right\rangle ~. \end{equation}
把波函数的一阶微扰(式 8
\begin{equation} \psi_n^1 = \sum_m^{E_m\ne E_n} \frac{ \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^0 \right\rangle }{E_n^0 - E_m^0}\psi_m^0~. \end{equation}
代入式 6 发现第二项为 0,得二阶能量修正(式 1
\begin{equation} E_n^2 = \left\langle \psi_n^0 \middle| H^1 \middle| \psi_n^1 \right\rangle = \sum_{m}^{E_m\ne E_n} \frac{ \left\lvert \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^0 \right\rangle \right\rvert ^2}{E_n^0-E_m^0}~. \end{equation}

   式 5 要求所有非对角元($m\ne n$)满足

\begin{equation} \left\langle \psi_m^0 \middle| \psi_n^2 \right\rangle = \frac{1}{E_n^0-E_m^0}\sum_{m'}^{E_{m'}\ne E_n}\frac{ \left\langle \psi_m^0 \middle| H^1 \middle| \psi_{m'}^0 \right\rangle \left\langle \psi_{m'}^0 \middle| H^1 \middle| \psi_n^0 \right\rangle }{E_n^0 - E_{m'}^0} - \frac{E_n^1 \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^0 \right\rangle }{(E_n^0 - E_m^0)^2}~. \end{equation}
同样假设 $m=n$ 时上式为 0,就得到了二阶波函数修正 $\psi_n^2$。

二阶能量修正的意义

   根据式 6

\begin{equation} \begin{aligned} E_n &= E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 + \dots \\ &= \left\langle \psi_n^0 + \lambda\psi_n^1 + \lambda^2\psi_n^2 + \dots \middle| H^0 + \lambda H^1 \middle| \psi_n^0 + \lambda\psi_n^1 + \lambda^2 \psi_n^2 + \dots \right\rangle ~. \end{aligned} \end{equation}
右边展开后如果按 $\lambda$ 的幂合并同类项,是否会和左边的各项对应?容易验证这对 $E_n^0$ 和 $E_n^1$ 来说都是正确的。但对 $\lambda^2$ 有
\begin{equation} E_n^2 = 2 \left\langle \psi_n^0 \middle| H^1 \middle| \psi_n^1 \right\rangle + \left\langle \psi_n^1 \middle| H^0 \middle| \psi_n^1 \right\rangle + 2 \left\langle \psi_n^0 \middle| H^0 \middle| \psi_n^2 \right\rangle ~. \end{equation}
如果这成立,那么对比式 8 ,就意味着
\begin{equation} E_n^2 + \left\langle \psi_n^1 \middle| H^0 \middle| \psi_n^1 \right\rangle + 2 \left\langle \psi_n^0 \middle| H^0 \middle| \psi_n^2 \right\rangle = 0~. \end{equation}
这是否可以证明成立?把式 7 代入可得
\begin{equation} \begin{aligned} \left\langle \psi_n^1 \middle| H^0 \middle| \psi_n^1 \right\rangle &= \sum_{m}^{E_m\ne E_n} \frac{ \left\lvert \left\langle \psi_m^0 \middle| H^1 \middle| \psi_n^0 \right\rangle \right\rvert ^2}{E_n^0 - E_m^0} \frac{E_m^0}{E_n^0 - E_m^0} = -E_n^2 + E_n^0 \left\langle \psi_n^2 \middle| \psi_n^2 \right\rangle ~. \end{aligned} \end{equation}
最后一项
\begin{equation} \left\langle \psi_n^0 \middle| H^0 \middle| \psi_n^2 \right\rangle = E_n^0 \left\langle \psi_n^0 \middle| \psi_n^2 \right\rangle = 0~. \end{equation}
也就是说式 11 右边多出了一个 $E_n^0 \left\langle \psi_n^2 \middle| \psi_n^2 \right\rangle $ 项,属于 $\lambda^4$ 数量级。

                     

© 小时科技 保留一切权利