北京大学 2000 年 考研 普通物理

                     

贡献者: 待更新

   声明:“该内容来源于网络公开资料,不保证真实性,如有侵权请联系管理员”

1. (18 分)

   1、(8 分)理想气体的比热商(定压热容量与定体热容量之比)记为 $\gamma$,试导出准静态绝热过程的 P-V 方程。

   2、(10 分)以理想气体为工作介质,将高温热源温度记为 $T1$,低温热源温度记为 $T2$. 试导出准静态卡诺循环的效率 $\eta$。

2. (16 分)

   设太阳固定不动,某行星 $P$ 围绕太阳在一椭圆轨道运动,如图所示,其中位置 1 为近太阳点,位置 2 为远太阳点。将太阳的质量记为 $M$,圆半长轴、半短轴分别记为 $A,B$.

图
图 1

   利用能量守恒关系和以太阳为参考点的角动量守恒关系,导出 $P$ 在位置 1、2 两处的运动速度大小 $V1,V2$;

   已知椭圆面积为 $\pi AB$,导出 $P$ 的轨道运动周期 $T$。

3.(16 分)

   半径为 $R$,质量为 $m$ 的匀质乒乓球,可处理为厚度可略的球壳。开始时以角速度 $\omega0$ 围绕它的一条水平直径轴旋转,球心无水平方向速度,今将其轻放在水平地面上,乒乓球与地面之间的滑动摩擦处处相同。

   试求乒乓球达到稳定运动状态时,它的转动角速度 $\omega$;

   计算从开始到最后达到稳定运动状态的全过程中,乒乓球动能的损失量 $E$'

   (已知半径为 $R$,质量为 $m$ 的匀质球壳相对其直径转轴的转动惯量为)

4.(16 分)

   边长为 $a$ 的正六边形分别有固定的点电荷,它们的电量或为 $Q$,或为 $-Q$,分布如图所示

图
图 2
  1. 试求因点电荷间相互的静电作用而使系统具有的电势能 $W$:
  2. 若用外力将相邻的一对正、负电荷一起(即始终保持其间距不变)缓慢地移到无穷远处,其余固定的点电荷位置保持不变,试求外力作功量 $A$。

5. 16 分)

   半径为 $r$ 的长直密绕空心螺线管,单位长度的绕线匝数为 $n$,所加交变电流为 $I = I_0 \sin \omega t$ 今在管的垂直平面上放置一个半径为 $2r$,电阻为 $R$ 的导线环,其圆心恰好在螺线管的轴线上。

图
图 3
  1. 计算导线环上涡旋电场 $E$ 的值,并在图中画出其正方向;
  2. 计算导线环上感应电流 $I_1$;
  3. 计算导线环与螺线管之间的互感系数 $M$。

6. (18 分)

   用钠黄光($\lambda =5893A$)观察迈克耳孙干涉仪的等倾圆条纹,开始时视场中共看到 10 个亮环,中心为亮斑,然后移动干涉仪一臂的平面镜,先后看到共有 10 个亮环缩进中央,而视场中除中心为亮斑外,还剩下 5 个亮环。试求:

  1. 平面镜移动的距离:
  2. 开始时中心亮斑的于涉级次;
  3. 移动平面镜后最外一个亮环的干涉级次

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择大量广告以及内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 20 元,我们一周就能脱离亏损, 并在接下来的一年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

                     

友情链接: 超理论坛 | ©小时科技 保留一切权利