北京大学 2009 年 考研 量子力学

                     

贡献者: 待更新

   声明:“该内容来源于网络公开资料,不保证真实性,如有侵权请联系管理员”

   1.两个非全同粒子在一维谐振子势中的波函数、能级。知道 $t = 0$ 时的初态,求 $t$ 时刻处于最大对称的概率。(**表示记不清楚)

   2.一维方势阱,$0 < x < a$ 处 $V(x) = V_0$,其余地方 $V(x) = 0$。一粒子从 $x > a$ 区域向左碰去,求透射的概率。

   3.①在 $L_z$ 表象中求 $L_x (L = 1)$ 的本征值、本征态。 ②在 $L_z = 1$ 的态下求 $L_x = 0$ 或 $1$ 的概率。

   4. ① 某势阱,求基态的波函数数和能量。② 开始处于 $E = (1/2) h \omega$,求在 $H'$ 作用下,仍处于 $E = (5/2) h \omega$ 的概率。

   5.一个立方体形状的势场。

   6.氮原子在微扰作用 $H' = e \cdot z \cdot \delta(t)$ 作用下跃迁到各激发态的概率之和。


致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择大量广告以及内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 20 元,我们一周就能脱离亏损, 并在接下来的一年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

                     

友情链接: 超理论坛 | ©小时科技 保留一切权利