向量丛

                     

贡献者: JierPeter; addis

  

未完成:需补充引用,GTM 275 第 7 章。
未完成:与 “纤维丛” 文章内容重复

预备知识 纤维丛流形

   向量丛是纤维丛的特例,即纤维都是向量空间的情况。

定义 1 向量丛

   给定拓扑空间 $B$ 和线性空间 $V$,如果存在一个拓扑空间 $E$ 和一个连续满射 $\pi:E\rightarrow B$,使得对于任意的 $x\in B$,都有 $\pi^{-1}(x)\cong V$,那么称这个结构 $(E, V, B, \pi)$ 为一个向量丛(vector bundle)

   向量丛之间也有丛映射:

定义 2 丛映射

   给定向量丛 $(E, V_E, M, \pi_E)$ 和 $(F, V_F, N, \pi_F)$,其中 $M$ 和 $N$ 是实流形。我们定义一个 “光滑丛映射($C^\infty$ bundle map)” 为 $E\rightarrow F$ 的映射偶 $\varphi: E\rightarrow F$ 和 $\overline{\varphi}: M\rightarrow N$,使得:

\begin{equation} \overline{\varphi}\circ\pi_E=\pi_F\circ\varphi~. \end{equation}
且在任意 $p\in M$ 处,$\varphi|_p$1是从 $p\times V_E$ 到 $\overline{\varphi}(p)\times V_F$ 的映射,并且是一个线性映射。

   在纤维丛文章中我们强调过,一个向量丛 $(E, V, B, \phi)$ 不能简单等同于 $B\times V$,不过 $B\times V$ 本身也是一个纤维丛,称之为平凡(trivial)的纤维丛。


1. ^ 即只考虑 $p$ 处纤维的映射 $\varphi$。

                     

© 小时科技 保留一切权利