连续叉乘的化简

                     

贡献者: addis

预备知识 矢量的叉乘,几何矢量的内积

   几何矢量的连续两个叉乘的化简也叫 BAC-CAB 定理

(1)A×(B×C)=B(AC)C(AB) ,(2)(B×C)×A=C(AB)B(AC) ,

   要证明这个定理可以将每个叉乘在各个基底上展开(式 11 )。

习题 1 

   由叉乘的坐标定义(式 11 )证明式 1

   这里对连续叉乘的几何意义略作说明,可以用于理解该公式的结构。以式 1 为例,根据叉乘的几何意义我们知道 B×C(命名为 D)方向垂直于 BC 所在平面。又因为 A×D 垂直于 D,所以最终的矢量再次落到 BC 所在平面上,所以等式右边是 BC 的线性组合。

   下面来介绍一种简单的记忆方法,括号外的矢量在哪边,括号内靠近那边的矢量所在的项前面就是正号,另一项前面则是负号1,如图 1 所示。

图
图 1:三矢量叉乘的化简

1. ^ 又或者记忆三组矢量中,中间位置的矢量是正号。

                     

© 小时科技 保留一切权利