贡献者: JierPeter; 叶月2_
经典力学讨论的时空是一个欧几里得空间,不同惯性系之间的伽利略变换是一个保度量变换,即时空点之间的度量在变换前后不变。但是相对论下的欧几里得度量不再是不变的,两个时空点之间的度量,在洛伦兹变换后一般会变化。不过相对论里有另一个类似欧几里得度量的东西,它在洛伦兹变换下保持不变。
由习题 1 可知,在任何惯性参考系中,$\sqrt{|-(t_1-t_2)^2+(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2|}$ 都是不变的。我们把这个量记为 $\Delta S$,称为两事件之间的时空间隔(interval)。
我们知道,$n$ 维欧几里得空间是 $n$ 个实数集合的笛卡尔积,配上用勾股定理定义的度量所得到的。这样的度量,在物理学上称为欧几里得度规。闵可夫斯基给四维时空定义了一个新的度规,即时空间隔。以时空间隔作为度规的四维空间,被称为闵可夫斯基空间。
时空间隔并不是数学意义上的度量(定义 1 ),因为它无法满足正定性,三角不等式也普遍不成立或不存在1。闵氏度规可看作一种广义内积的定义,用 $g_{\mu\nu}$ 或 $\eta_{\mu\nu}$ 表示闵氏度规张量,则是
另一种看待闵可夫斯基度规的方法是,把四维时空看成复数集合的笛卡尔积,依然使用勾股定理所定义的度量,但是把时间看成必须是纯虚数。也就是说,事件的时间为 $t$ 的时候,其在时间轴上的坐标是 $ \mathrm{i} t$。这样一来,就可以把事件 $( \mathrm{i} t, x, y, z)$ 的范数写成 $\sqrt{( \mathrm{i} t_1- \mathrm{i} t_2)^2+(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$,形式上和实数欧几里得空间的欧几里得范数是一样的,只不过用的是复数;进而得到形式上的 “复” 欧几里得度量。需要特别注意的是,闵可夫斯基度规并不能看成酉空间中的四维复数度量。
1. ^ 时空间隔不是实数的时候,无法比较大小。