贡献者: ACertainUser; addis
预备知识 电磁场的能量守恒、坡印廷矢量
,
张量
,
张量的散度
1
1. 结论
类比电磁场的能量守恒、坡印廷矢量的概念,我们也能导出电磁场的动量守恒与动量流密度。
电磁场动量密度
\begin{equation}
\boldsymbol{\mathbf{g}} = \mu_0 \epsilon_0 \boldsymbol{\mathbf{s}} = \frac{1}{c^2} \boldsymbol{\mathbf{s}} ~.
\end{equation}
动量流密度张量
动量流密度张量为又称麦克斯韦应力张量(Maxwell Stress Tensor)。
\begin{equation}
T_{ij} = \epsilon_0 \left(\frac12 \boldsymbol{\mathbf{E}} ^2 \delta_{ij} - E_i E_j \right) + \frac{1}{\mu_0} \left(\frac12 \boldsymbol{\mathbf{B}} ^2 \delta_{ij} - B_i B_j \right) ~.
\end{equation}
动量守恒定律
类比电荷守恒与电磁场的能量守恒公式,一个守恒的量在闭合空间中有 “积累速率=流入速率”。这意味着某一封闭空间中,电荷动量与电磁场动量的增量来自从外部流入的动量流。
\begin{equation}
\frac{\mathrm{d}{( \boldsymbol{\mathbf{p}} + \boldsymbol{\mathbf{g}} )}}{\mathrm{d}{t}} + \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} = \boldsymbol{\mathbf{0}} ~,
\end{equation}
即
\begin{equation}
\boldsymbol{\mathbf{f}} + \mu_0 \epsilon_0 \frac{\partial \boldsymbol{\mathbf{s}} }{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} = \boldsymbol{\mathbf{0}} ~.
\end{equation}
$ \boldsymbol{\mathbf{p}} $ 是单位电荷的动量密度。根据动量定理,$ \frac{\mathrm{d}{ \boldsymbol{\mathbf{p}} }}{\mathrm{d}{t}} = \boldsymbol{\mathbf{f}} ~.$
$ \boldsymbol{\mathbf{f}} $ 是电荷的 “受力密度”,由广义洛伦兹力得到。$ \boldsymbol{\mathbf{f}} = \rho ( \boldsymbol{\mathbf{E}} + \boldsymbol{\mathbf{v}} \boldsymbol\times \boldsymbol{\mathbf{B}} )~.$
2. 推导
能量是标量,所以能流密度就是矢量。但动量本身就是矢量,要如何表示动量流密度呢?
我们可以分析动量在某方向分量的流密度。根据张量的散度
\begin{equation}
( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} )_j = \sum_i \frac{\partial}{\partial{x_i}} T_{ji}~.
\end{equation}
由广义洛伦兹力计算电荷的受力密度 $ \boldsymbol{\mathbf{f}} $
\begin{equation}
\boldsymbol{\mathbf{f}} = \rho ( \boldsymbol{\mathbf{E}} + \boldsymbol{\mathbf{v}} \boldsymbol\times \boldsymbol{\mathbf{B}} ) = \rho \boldsymbol{\mathbf{E}} + \boldsymbol{\mathbf{j}} \boldsymbol\times \boldsymbol{\mathbf{B}}
\qquad ( \boldsymbol{\mathbf{j}} = \rho \boldsymbol{\mathbf{v}} )~.
\end{equation}
由于
式 4 的后两项是电磁场的量,不能含有关于电荷的量,所以接下来要通过
麦克斯韦方程组把电荷密度 $\rho$ 和电流密度 $ \boldsymbol{\mathbf{j}} $ 替换成电磁场。
\begin{equation}
\rho = \epsilon_0 \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} \qquad
\left( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} = \frac{\rho}{\epsilon_0} \right) ~,
\end{equation}
\begin{equation}
\boldsymbol{\mathbf{j}} = \frac{1}{\mu_0} \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} - \epsilon_0 \frac{\partial \boldsymbol{\mathbf{E}} }{\partial t}
\qquad \left( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} = \mu_0 \boldsymbol{\mathbf{j}} + \epsilon_0 \mu_0 \frac{\partial \boldsymbol{\mathbf{E}} }{\partial t} \right) ~.
\end{equation}
代入上式,得
\begin{equation}
\boldsymbol{\mathbf{f}} = \epsilon_0 ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + \frac{1}{\mu_0} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) \boldsymbol\times \boldsymbol{\mathbf{B}} - \epsilon_0 \frac{\partial \boldsymbol{\mathbf{E}} }{\partial t} \boldsymbol\times \boldsymbol{\mathbf{B}} ~.
\end{equation}
其中
\begin{equation} \begin{aligned}
\frac{\partial \boldsymbol{\mathbf{E}} }{\partial t} \boldsymbol\times \boldsymbol{\mathbf{B}} &= \frac{\partial}{\partial{t}} ( \boldsymbol{\mathbf{E}} \boldsymbol\times \boldsymbol{\mathbf{B}} ) - \boldsymbol{\mathbf{E}} \boldsymbol\times \frac{\partial \boldsymbol{\mathbf{B}} }{\partial t} \\
&= \frac{\partial}{\partial{t}} ( \boldsymbol{\mathbf{E}} \boldsymbol\times \boldsymbol{\mathbf{B}} ) - ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) \boldsymbol\times \boldsymbol{\mathbf{E}}
\qquad \left( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} = - \frac{\partial \boldsymbol{\mathbf{B}} }{\partial t} \right) ~,
\end{aligned} \end{equation}
代入上式得
\begin{equation} \begin{aligned}
\boldsymbol{\mathbf{f}} &= \epsilon_0 ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + \frac{1}{\mu_0} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) \boldsymbol\times \boldsymbol{\mathbf{B}} + \epsilon_0 ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) \boldsymbol\times \boldsymbol{\mathbf{E}} - \epsilon_0 \frac{\partial}{\partial{t}} ( \boldsymbol{\mathbf{E}} \boldsymbol\times \boldsymbol{\mathbf{B}} )\\
&= \epsilon_0 [ ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) \boldsymbol\times \boldsymbol{\mathbf{E}} ] + \frac{1}{\mu_0} ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) \boldsymbol\times \boldsymbol{\mathbf{B}} - \epsilon_0 \mu_0 \frac{\partial \boldsymbol{\mathbf{s}} }{\partial t} ~.
\end{aligned} \end{equation}
为了使式中电磁场的公式更加对称,不妨加上一项
\begin{equation}
\frac{1}{\mu_0} ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{B}} ) \boldsymbol{\mathbf{B}} = \boldsymbol{\mathbf{0}}
\qquad ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{B}} = 0)~,
\end{equation}
得
\begin{equation}
\boldsymbol{\mathbf{f}} = \epsilon_0 [( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) \boldsymbol\times \boldsymbol{\mathbf{E}} ] + \frac{1}{\mu_0} [ ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{B}} ) \boldsymbol{\mathbf{B}} + ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) \boldsymbol\times \boldsymbol{\mathbf{B}} ] - \epsilon_0 \mu_0 \frac{\partial \boldsymbol{\mathbf{s}} }{\partial t} ~.
\end{equation}
一般来说,凡是出现两个连续的叉乘要尽量化成内积,下面计算 $( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) \boldsymbol\times \boldsymbol{\mathbf{E}} $。
由吉布斯算子(劈形算符)的相关公式
\begin{equation}
\boldsymbol\nabla ( \boldsymbol{\mathbf{A}} \boldsymbol\cdot \boldsymbol{\mathbf{B}} ) = \boldsymbol{\mathbf{A}} \boldsymbol\times ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) + \boldsymbol{\mathbf{B}} \boldsymbol\times ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{A}} ) + ( \boldsymbol{\mathbf{A}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{B}} + ( \boldsymbol{\mathbf{B}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{A}} ~.
\end{equation}
令 $ \boldsymbol{\mathbf{A}} = \boldsymbol{\mathbf{B}} = \boldsymbol{\mathbf{E}} $,得
\begin{equation}
\boldsymbol\nabla ( \boldsymbol{\mathbf{E}} ^2) = 2 \boldsymbol{\mathbf{E}} \boldsymbol\times ( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) + 2( \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{E}} ~,
\end{equation}
即 $( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{E}} ) \boldsymbol\times \boldsymbol{\mathbf{E}} = ( \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{E}} - \boldsymbol\nabla ( \boldsymbol{\mathbf{E}} ^2)/2$
同理得
\begin{equation}
( \boldsymbol{\nabla}\boldsymbol{\times} \boldsymbol{\mathbf{B}} ) \boldsymbol\times \boldsymbol{\mathbf{B}} = ( \boldsymbol{\mathbf{B}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{B}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{B}} ^2)~.
\end{equation}
代入得
\begin{equation} \begin{aligned}
\boldsymbol{\mathbf{f}} = &\epsilon_0 [ ( \boldsymbol{\nabla}\boldsymbol{\times} E) \boldsymbol{\mathbf{E}} + ( \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{E}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{E}} ^2) ]\\
&+ \frac{1}{\mu_0} [ ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{B}} ) \boldsymbol{\mathbf{B}} + ( \boldsymbol{\mathbf{B}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{B}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{B}} ^2) ] - \epsilon_0 \mu_0 \frac{\partial \boldsymbol{\mathbf{s}} }{\partial t} ~.
\end{aligned} \end{equation}
与式 4 对比,可以看出动量流密度张量的散度为
\begin{equation} \begin{aligned}
\boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} = &-\epsilon_0 [ ( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + ( \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{E}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{E}} ^2)]\\
&-\frac{1}{\mu_0} [( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{B}} ) \boldsymbol{\mathbf{B}} + ( \boldsymbol{\mathbf{B}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{B}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{B}} ^2)]~.
\end{aligned} \end{equation}
接下来由二阶张量的散度计算公式,通过对比系数,就可以求出动量流密度张量 $ \boldsymbol{\mathbf{T}} $(三阶矩阵)。
下面把等式右边的部分用求和符号表示(求和符号是张量分析中最常见的符号,只有熟练运用才能学好张量分析)。下面推导用到了克罗内克 $\delta$ 函数,且定义任意矢量加上下标 表示第 个分量,例如
\begin{equation}
\boldsymbol{\mathbf{A}} _j =
\begin{cases}
A_x &(j = 1)\\ A_y &(j = 2)\\ A_z &(j = 3)
\end{cases}~,
\qquad
x_j =
\begin{cases}
x &(j = 1)\\ y &(j = 2)\\ z &(j = 3)
\end{cases}~.
\end{equation}
$( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + ( \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{E}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{E}} ^2)$ 是一个矢量,它的第 $j$ 个分量为
\begin{equation} \begin{aligned}
&\phantom{={}} [( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{E}} ) \boldsymbol{\mathbf{E}} + ( \boldsymbol{\mathbf{E}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{E}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{E}} ^2)]_j\\
&= \sum_i \frac{\partial E_i}{\partial x_i} E_j + \sum_i E_i \frac{\partial E_j}{\partial x_i} - \frac12 \sum_i \frac{\partial \boldsymbol{\mathbf{E}} ^2}{\partial x_i} \delta_{ij} \\
&= \sum_i \left( \frac{\partial E_i}{\partial x_i} E_j + {E_i} \frac{\partial E_j}{\partial x_i} - \frac12 \frac{\partial \boldsymbol{\mathbf{E}} ^2}{\partial x_i} \delta_{ij} \right) \\
&= \sum_i \left( \frac{\partial}{\partial{x_i}} (E_i E_j) - \frac12 \frac{\partial \boldsymbol{\mathbf{E}} ^2}{\partial x_i} \delta_{ij} \right) \\
&= \sum_i \frac{\partial}{\partial{x_i}} \left(E_i E_j - \frac12 \boldsymbol{\mathbf{E}} ^2 \delta_{ij} \right) ~.
\end{aligned} \end{equation}
同理
\begin{equation}
\left[( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{B}} ) \boldsymbol{\mathbf{B}} + ( \boldsymbol{\mathbf{B}} \boldsymbol\cdot \boldsymbol{\mathbf{\nabla}} ) \boldsymbol{\mathbf{B}} - \frac12 \boldsymbol\nabla ( \boldsymbol{\mathbf{B}} ^2) \right] _j = \sum_i \frac{\partial}{\partial{x_i}} \left(B_i B_j - \frac12 \boldsymbol{\mathbf{B}} ^2 \delta_{ij} \right) ~,
\end{equation}
所以
\begin{equation}
( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} )_j = \sum_i \frac{\partial}{\partial{x_i}} \left[\epsilon_0 \left(\frac12 \boldsymbol{\mathbf{E}} ^2 \delta_{ij} - E_i E_j \right) + \frac{1}{\mu_0} \left(\frac12 \boldsymbol{\mathbf{B}} ^2 \delta_{ij} - B_i B_j \right) \right] ~.
\end{equation}
而由张量散度的定义
\begin{equation}
( \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} )_j = \sum_i \frac{\partial}{\partial{x_i}} T_{ij}~,
\end{equation}
得到动量流密度张量为
\begin{equation}
T_{ij} = \epsilon_0 \left(\frac12 \boldsymbol{\mathbf{E}} ^2 \delta_{ij} - E_i E_j \right) + \frac{1}{\mu_0} \left(\frac12 \boldsymbol{\mathbf{B}} ^2 \delta_{ij} - B_i B_j \right) ~.
\end{equation}
理论上,在 $ \boldsymbol{\mathbf{T}} $ 上面加上任意一个满足 $ \boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{T}} ' = \boldsymbol{\mathbf{0}} $ 的张量场,均可以使电磁场动量守恒,但是若规定无穷远处动量流密度为零,则可以证明 ${T'_{ij}} = 0$。
1. ^ 本文参考了 [1] 与周磊教授的《电动力学》讲义
[1] ^ David Griffiths, Introduction to Electrodynamics, 4ed