指数衰减

             

  • 本词条处于草稿阶段.
预备知识 一阶线性微分方程

  

未完成:举例说明在什么问题中出现:核衰变

  1衰变的速率和总量成正比,或者说每个粒子单位时间衰变的概率一样.

\begin{equation} \frac{\mathrm{d}{N}}{\mathrm{d}{t}} = -\lambda N \end{equation}
方程的解
\begin{equation} N(t) = N_0 \mathrm{e} ^{-\lambda t} \end{equation}
半衰期 $T_h$ 定义为,一半粒子发生衰变所需要的时间.满足
\begin{equation} N(T_h) = \frac{N_0}{2} \iff \mathrm{e} ^{-\lambda T_h} = \frac{1}{2} \end{equation}
解得
\begin{equation} T_h = \frac{\ln 2}{\lambda} \end{equation}


1. ^ 参考 Wikipedia 相关页面

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

         

© 小时科技 保留一切权利