三维简谐振子(球坐标)
 
 
 
 
 
 
 
希望求解定态薛定谔方程(eq. 7 )
\begin{equation}
-\frac{\hbar^2}{2m} \boldsymbol{\nabla}^2 {\Psi} + V( \boldsymbol{\mathbf{r}} )\Psi = E \Psi
\end{equation}
其中势能函数为
\begin{equation}
V( \boldsymbol{\mathbf{r}} ) = \frac{1}{2}m\omega^2 r^2
\end{equation}
我已知角向波函数是球谐函数
$Y_{l,m}( \hat{\boldsymbol{\mathbf{r}}} )$.只需解出方程(
eq. 10 )即可
\begin{equation}
-\frac{1}{2m} \frac{\mathrm{d}^{2}{\psi_l}}{\mathrm{d}{r}^{2}} + \left[V(r) + \frac{l(l + 1)}{2mr^2} \right] \psi_l = E\psi_l
\end{equation}
总波函数和能级为
\begin{equation}
\psi_{n,l,m} = R_{n,l}(r) Y_{l,m}(\Omega)
\qquad
E_{n,l} = \left(2n + l + \frac32 \right) \hbar \omega
\end{equation}
由于角动量量子数 $l$ 只决定离心势能 $\frac{\hbar^2}{2m} \frac{l(l + 1)}{r^2}$ 的大小,所以 $l$ 可以取任意非负整数.径向波函数为.令 $x = r/\beta $
\begin{equation}
R_{n,l}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} \sqrt{\frac{2^{n+l+2} n!}{(2n + 2l + 1)!!}} x^l L_n^{l+1/2}(x^2) \mathrm{e} ^{-x^2/2}
\end{equation}
其中 $L_n^{l+1/2}$ 是广义拉盖尔多项式
.
前几个束缚态为(简并 $\deg = \sum (2l + 1)$)
- $E = 3\hbar \omega /2$($\deg = 1$)
\begin{equation}
R_{0,0}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} 2 \mathrm{e} ^{-\frac12 x^2}
\end{equation}
- $E = 5\hbar \omega /2$($\deg = 3$)
\begin{equation}
R_{0,1}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} \frac{2\sqrt 6}{3} x \mathrm{e} ^{-\frac12 x^2}
\end{equation}
- $E = 7\hbar \omega /2$($\deg = 6$)
\begin{equation}
R_{0,2}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} \frac{4}{\sqrt{15}} x^2 \mathrm{e} ^{- x^2/2}
\end{equation}
\begin{equation}
R_{1,0}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} \frac{2\sqrt 6}{3} \left(\frac32 - x^2 \right) \mathrm{e} ^{-x^2/2}
\end{equation}
- $E = 9\hbar\omega /2$($\deg = 8$)
\begin{equation}
R_{0,3}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} 4\sqrt{\frac{2}{105}} x^3 \mathrm{e} ^{-x^2/2}
\end{equation}
\begin{equation}
R_{1,1}(r) = \frac{1}{\beta^{3/2} \pi^{1/4}} \frac{4}{\sqrt{15}} \left(\frac52 - x^2 \right) x \mathrm{e} ^{-x^2/2}
\end{equation}