双摆和三摆

             

Prerequisite 拉格朗日方程

双摆

   (未完成)

三摆

Fig
Fig. 1:三摆

   如fig. 1 所示,三根质量不计的杆长度分别为 $l_1, l_2, l_3$,三个质点的质量分别为 $m_1, m_2, m_3$.我们把这个模型叫做三摆.三摆常用于演示物理学中的混沌现象.

运动方程

\begin{equation} \begin{aligned} T &= \frac{1}{2} m_1 (l_1 \omega_1)^2 + \frac{1}{2} m_2 [(l_1 \omega_1 \cos\theta_1 + l_2 \omega_2 \cos\theta_2)^2 +\\ &\qquad \qquad\qquad\qquad\qquad\qquad (l_1 \omega_1 \sin\theta_1 + l_2 \omega_2 \sin\theta_2)^2]\\ & + \frac{1}{2} m_3 [(l_1 \omega_1 \cos\theta_1 + l_2 \omega_2 \cos\theta_2 + l_3 \omega_3 \cos \theta_3)^2 +\\ &\qquad\qquad\qquad (l_1 \omega_1 \sin\theta_1 + l_2 \omega_2 \sin\theta_2 + l_3 \omega_3 \sin\theta_3)^2] \end{aligned} \end{equation}
\begin{equation} \begin{aligned} V &= -m_1 g l_1 \cos \theta_1 - m_2 g (l_1\cos \theta_1 + l_2 \cos \theta_2)\\ &\qquad - m_3 g (l_1 \cos\theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta_3) \end{aligned} \end{equation}
\begin{equation} L(\theta_1, \theta_2, \theta_3, \omega_1, \omega_2, \omega_3) = T(\omega_1, \omega_2, \omega_3) - V(\theta_1, \theta_2, \theta_3) \end{equation}
\begin{equation} \frac{\mathrm{d}}{\mathrm{d}{t}} \frac{\partial L}{\partial \omega_i} = \frac{\partial L}{\partial \theta_i} \quad (i=1,2,3) \end{equation}

   这是一个二阶微分方程组.

         

© 小时科技 保留一切权利