贡献者: ACertainUser; addis
1圆锥曲线(conic section)的一般定义:曲线上任意一点至一定点(焦点)的距离,与它至一直线(准线)的垂直距离始终成固定比例(离心率):
根据
离心率 | 名称 |
| 椭圆 |
| 抛物线 |
| 双曲线 |
本节使用的术语请参考下文。
以极坐标表示圆锥曲线时,原点为圆锥曲线的(一个)焦点。其中
以直角坐标表示圆锥曲线时,原点为该图形的几何中心(对于抛物线,则是他的顶点),这与极坐标是不同的。有时,相对于抽象的极坐标方程,直角坐标表示的圆锥曲线更为直观。
一些术语:
名称 | 直角坐标方程 | 半焦距 Linear Eccentricity | 离心率 Eccentricity | 半通径 Semi Latus Rectum | 焦准距 Focal Parameter | 焦点坐标 | 准线方程 | 备注 |
椭圆 Ellipse | | | | | | | | |
抛物线 Parabola | | \ | 1 | | | | | 只有一条准线和一个焦点 |
双曲线 Hyperbola | | | | | | | | 分为互不相连的两支 |
常用恒等式:
1. ^ 本文参考自 Wikipedia 的 Conic Section、圆锥曲线文章。