贡献者: ACertainUser; addis
注意以下讨论的碰撞不必要求在一瞬间发生,可以拓展到有限距离的作用力甚至无穷远但不断衰减的作用力。例如考虑两个带电荷的质点的碰撞。在无穷远处时,二者之间的作用可忽略,此时的速度可定义为初速度。当发生相互作用后,把两质点互相远离到相距无穷远时的速度定义为末速度。
高中物理中,若两质点的运动限制在同一直线上且碰撞为完全弹性碰撞,我们可以联立能量守恒和动量守恒两条式子来解出碰撞后的速度。
但这里介绍另一种更简单的方法,即利用质心系求解。为了区别于质心系,我们把原参考系叫做实验室参考系(简称为实验系)。令两质点质量分别为
由速度叠加原理,初始时两质点在质心系中的速度分别为
若问题为非完全弹性碰撞,可设质心系中碰撞后与碰撞前的能量比值为
若两质点的轨迹始终在同一平面上,我们把该碰撞称为二维碰撞,若不在同一平面则称为三维碰撞。二维和三维碰撞中,碰撞损失的能量可能与碰撞的角度有关,这里仅讨论最常见的完全弹性碰撞。 碰撞的轨迹如图 1 所示。由于质心系中系统的总动量始终为 0(式 2 ), 初状态和末状态中两质点的速度方向相反,但延长线一般不重合(否则就变为上面的一维情况)。质点末状态速度与初状态速度的夹角叫做散射角(scattering angle)。注意质心系中两质点散射角相同,而实验系中两散射角不必相同。求散射角需要知道具体的作用力形式,以下讨论假设我们已知质心系中的散射角。若两质点间的相互作用力与两点的连线共线,那么质心系中两质点的运动轨迹将始终在同一平面上,而这在实验系中一般不成立(当两个质点的入射延长线为两条不平行且不相交的直线时)。
令质量分别为