抛物线坐标系中的类氢原子定态波函数

                     

贡献者: addis

  • 本文处于草稿阶段。
  • 画出密度图应该会很漂亮
预备知识 定态薛定谔方程,抛物线坐标系

  1本文使用原子单位制。使用相对坐标,令约化质量为 $\mu$,有

\begin{equation} -\frac{1}{2\mu} \boldsymbol{\nabla}^2 \psi - \frac{Z}{r} \psi = E\psi~. \end{equation}
在抛物线坐标系中变为
\begin{equation} -\frac{1}{2m} \left\{\frac{4}{\xi + \eta} \left[ \frac{\partial u}{\partial \xi} \left(\xi \frac{\partial}{\partial{\xi}} \right) + \frac{\partial u}{\partial \eta} \left(\eta \frac{\partial}{\partial{\eta}} \right) \right] + \frac{1}{\xi\eta} \frac{\partial^{2}{u}}{\partial{\phi}^{2}} \right\} \psi - \frac{2Z}{\xi + \eta}\psi = E\psi~. \end{equation}
分离变量,令
\begin{equation} \psi(\xi, \eta, \phi) = f(\xi) g(\eta) \Phi(\phi)~. \end{equation}
和球坐标同理,$\Phi(\phi) = \exp\left( \mathrm{i} m \phi\right) $。令另外两个分离变量常数满足
\begin{equation} \nu_1 + \nu_2 = Z~. \end{equation}
\begin{equation} \frac{\mathrm{d}}{\mathrm{d}{\xi}} \left(\xi \frac{\mathrm{d}{f}}{\mathrm{d}{\xi}} \right) + \left(\frac{\mu E \xi}{2} - \frac{m^2}{4\xi} + \nu_1 \right) f = 0~, \end{equation}
\begin{equation} \frac{\mathrm{d}}{\mathrm{d}{\eta}} \left(\eta \frac{\mathrm{d}{g}}{\mathrm{d}{\eta}} \right) + \left(\frac{\mu E\eta}{2} - \frac{m^2}{4\eta} + \nu_2 \right) g = 0~, \end{equation}
可以化简为 Kummer-Laplace 微分方程。解出后,$\nu_1, \nu_2$ 分别对应两个整数 $n_1, n_2$,称为抛物线量子数,和主量子数 $n$ 的关系为
\begin{equation} n = n_1 + n_2 + \left\lvert m \right\rvert + 1~. \end{equation}
令 $\rho_1 = Z\xi / n$,$\rho_2 = Z\eta/n$,定态波函数为
\begin{equation} \begin{aligned} \psi_{n_1,n_2,m}(\xi,\eta,\phi) &= \frac{(Z/a_\mu)^{3/2}}{\sqrt{\pi} n^2} \sqrt{\frac{n_1!n_2!}{[(n_1+ \left\lvert m \right\rvert )!(n_2+ \left\lvert m \right\rvert )!]^3}} \\ &\times \mathrm{e} ^{-(\rho_1+\rho_2)/2}(\rho_1\rho_2)^{ \left\lvert m \right\rvert /2} L_{n_1 + \left\lvert m \right\rvert }^{ \left\lvert m \right\rvert }(\rho_1) L_{n_2 + \left\lvert m \right\rvert }^{ \left\lvert m \right\rvert }(\rho_2) \mathrm{e} ^{ \mathrm{i} m\phi}~, \end{aligned} \end{equation}
其中 $a_\mu = M/(M + 1)$ 是约化玻尔半径(未完成)。

   能量本征值为

\begin{equation} E_n = -\frac{Z^2}{2n^2}~. \end{equation}


1. ^ 参考 [1] Chap. 3.5 One-electron atoms in parabolic coordinates.


[1] ^ Bransden, Physics of Atoms and Molecules, 2ed

                     

© 小时科技 保留一切权利