贡献者: addis; 邵宜阳; Giacomo
1. 复数幂函数
定义
任意给定 $\alpha\in \mathbb{C}$,对于复变量 $z\ne 0$,定义 $z$ 的 $\alpha$ 次幂函数为
\begin{align}
w&=z^\alpha\notag\\
&=\exp\{\alpha \ln z\}~.
\end{align}
当 $z=0$ 时,定义 $0^\alpha = 0$
分解
上面那个式子有点抽象,我们可以把它分解开来研究
\begin{align}
\ln z &= \ln |z|+i\phi(z)\notag\\
\alpha&=\alpha_R+i\alpha_I\notag\\~
\end{align}
\begin{align}
z^\alpha&=\exp\{(\alpha_R+i\alpha_I)[\ln |z|+i\phi(z)]\notag\}\\
&=\exp\{[\alpha_R \ln|z|-\alpha_I\phi (z)]+i[\alpha_I\ln|z|+a_R\phi(z)]\}\notag\\
&=|z|^{\alpha_R} \mathrm{e} ^{-\alpha_I\phi(z)}\cdot \mathrm{e} ^{i[\alpha_I \ln\left(z\right) +\alpha_R\phi(z)]}~
\end{align}
\begin{align}
\therefore |z^\alpha|&=|z|^{\alpha_R} \mathrm{e} ^{-\alpha_I\phi(z)}\notag\\
\arg z^\alpha&=\alpha_I \ln\left(z\right) +\alpha_R\phi(z)\notag~,
\end{align}
\begin{equation}
\text{其中}\phi(z)=\arg z+2k\pi,k\in\mathbb Z~
\end{equation}
分析
幂函数特点:
- $z^\alpha$ 的模长和辐角都分别与 $z$ 和 $\alpha$ 有关
- $z^\alpha$ 可能是单值的、有限多值或无限多值的函数,取决于 $\alpha$
下面讨论不同的 $\alpha$ 下幂函数的单值或多值性
\[
(1)~~\alpha_R=n,\alpha_I=0~~(n\in\mathbb Z)~,
\]
\begin{align}
|z^\alpha|&=|z|^{\alpha_R} \mathrm{e} ^{-\alpha_I\phi(z)}\notag\\
&=|z|^{n}\notag\\
\arg z^\alpha&=\alpha_I \ln\left(z\right) +\alpha_R\phi(z)\notag\\
&=n(\arg z+2k\pi)\notag\\
\because e^{i2kn\pi}&=1\notag\\
\therefore z^\alpha&=|z|^{n}\cdot \mathrm{e} ^{in\arg z}\\
\text{此时}&\text{幂函数为单值函数}\notag~
\end{align}
\[
(2)~~\alpha_R=\frac m n,\alpha_I=0~~(m,n\in\mathbb Z)~,
\]
\begin{align}
|z^\alpha|&=|z|^{\alpha_R} \mathrm{e} ^{-\alpha_I\phi(z)}\notag\\
&=|z|^{\frac m n}\notag\\
\arg z^\alpha&=\alpha_I \ln\left(z\right) +\alpha_R\phi(z)\notag\\
&=\frac 1 n(\arg z+2k\pi)\notag\\
\therefore z^\alpha&=|z|^{\frac 1 n}\cdot \mathrm{e} ^{i(\frac {\arg z} n+2\frac k n \pi)}\\
\mathrm{e} ^{i2\frac k n \pi} \text{有 n 个取值} & \text{(当} k=0,1,\dots,n-1 \text{时)}\notag\\
\text{此时}&\text{幂函数为 n 值函数}\notag~
\end{align}
\[
(3)~~\alpha_R=\frac m n,\alpha_I=0~~(m,n\in\mathbb Z)~,
\]
\begin{align}
\text{由(3)(4)知}&\text{,}z^\alpha=\sqrt[n]{z^m}\notag\\~
\text{可见此时}&\text{幂函数为 n 值函数}\notag~
\end{align}
\[
(4)~~\alpha_R=\frac 1 n,\alpha_I=0~~(n\in\mathbb Z)~,
\]
\begin{align}
|z^\alpha|&=|z|^{\alpha_R} \mathrm{e} ^{-\alpha_I\phi(z)}\notag\\
&=|z|^{\frac 1 n}\notag\\
\arg z^\alpha&=\alpha_I \ln\left(z\right) +\alpha_R\phi(z)\notag\\
&=\frac 1 n(\arg z+2k\pi)\notag\\
\therefore z^\alpha&=|z|^{\frac 1 n}\cdot \mathrm{e} ^{i(\frac {\arg z} n+2\frac k n \pi)}\\
\mathrm{e} ^{i2\frac k n \pi}\text{有 n 个取值}&\text{(当}k=0,1,\dots,n-1\text{时)}\notag\\
\text{此时}&\text{幂函数为 n 值函数}\notag~
\end{align}
在数值计算中,分支切割线出现在 $\phi(z) = \pm\pi$ 处,这是因为数值计算通常取 $\phi(z)\in(-\pi, \pi]$。