证明 $ \boldsymbol{\mathbf{A}} \boldsymbol\times ( \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{C}} ) = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} $
Fig. 1:把 $ \boldsymbol{\mathbf{B}} , \boldsymbol{\mathbf{C}} , \boldsymbol{\mathbf{D}} $ 投影到与 $ \boldsymbol{\mathbf{A}} $ 垂直的平面上
首先令
\begin{equation}
\boldsymbol{\mathbf{D}} = \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{C}}
\end{equation}
把矢量 $ \boldsymbol{\mathbf{B}} , \boldsymbol{\mathbf{C}} , \boldsymbol{\mathbf{D}} $ 在与矢量 $ \boldsymbol{\mathbf{A}} $ 垂直的平面上投影,分别得到 $ \boldsymbol{\mathbf{B}} ', \boldsymbol{\mathbf{C}} ', \boldsymbol{\mathbf{D}} '$.显然,$ \boldsymbol{\mathbf{D}} '= \boldsymbol{\mathbf{B}} '+ \boldsymbol{\mathbf{C}} '$.
现在先证明
\begin{equation}
\boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} '
\end{equation}
这是叉乘的一个基本的性质.首先,
根据叉乘的几何定义
,$ \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} $ 与
$ \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} '$ 的方向相同.另外
\begin{equation}
\left\lvert \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} \right\rvert = \left\lvert \boldsymbol{\mathbf{A}} \right\rvert \left\lvert \boldsymbol{\mathbf{B}} \right\rvert \sin{\theta_{AB}} = \left\lvert \boldsymbol{\mathbf{A}} \right\rvert \left\lvert \boldsymbol{\mathbf{B}} ' \right\rvert = \left\lvert \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} ' \right\rvert
\end{equation}
所以二者模长也相等,证毕.
同理有
\begin{equation}
\boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} '
\end{equation}
\begin{equation}
\boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} '
\end{equation}
所以,要证明
\begin{equation}
\boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} + \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}}
\end{equation}
只需要证明
\begin{equation}
\boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{D}} ' = \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{B}} ' + \boldsymbol{\mathbf{A}} \boldsymbol\times \boldsymbol{\mathbf{C}} '
\end{equation}
即可.
由于 $ \boldsymbol{\mathbf{B}} ', \boldsymbol{\mathbf{C}} ', \boldsymbol{\mathbf{D}} '$ 都与 $ \boldsymbol{\mathbf{A}} $ 垂直,所以 $ \boldsymbol{\mathbf{A}} $ 与之叉乘的效果相当于 $ \boldsymbol{\mathbf{B}} ', \boldsymbol{\mathbf{C}} ', \boldsymbol{\mathbf{D}} '$ 的模长分别乘以 $ \left\lvert \boldsymbol{\mathbf{A}} \right\rvert $,且绕 $ \boldsymbol{\mathbf{A}} $ 逆时针分别旋转 $90^\circ$.所以上式就是在说,若已知 $ \boldsymbol{\mathbf{B}} ' + \boldsymbol{\mathbf{C}} ' = \boldsymbol{\mathbf{D}} '$,那么把它们分别乘以常数并旋转 $90^\circ$ 后这个加法仍然成立.这是显然的.证毕.