叉乘的矩阵形式

             

Prerequisite 矢量叉乘

   对任意矢量 $ \boldsymbol{\mathbf{a}} $ 和 $ \boldsymbol{\mathbf{b}} $,令

\begin{equation} \boldsymbol{\mathbf{c}} = \boldsymbol{\mathbf{a}} \boldsymbol\times \boldsymbol{\mathbf{b}} \end{equation}
该运算可以看作列矢量 $ \boldsymbol{\mathbf{b}} $ 到列矢量 $ \boldsymbol{\mathbf{c}} $ 的线性变换.我们知道线性变换可以用矩阵表示,所以必存在矩阵 $ \boldsymbol{\mathbf{A}} $,满足
\begin{equation} \boldsymbol{\mathbf{c}} = \boldsymbol{\mathbf{A}} \boldsymbol{\mathbf{b}} \end{equation}
令 $ \boldsymbol{\mathbf{a}} $ 的坐标为 $(a_x, a_y, a_z)$,根据叉乘的分量表达式(eq. 14 ),易得变换矩阵为
\begin{equation} \boldsymbol{\mathbf{A}} = \begin{pmatrix} 0 & -a_z & a_y\\ a_z & 0 & -a_x\\ -a_y & a_x & 0 \end{pmatrix} \end{equation}
这是一个反对称矩阵,即 $A_{ij} = -A_{ji}$.

   同理,eq. 1 也可以看作是 $ \boldsymbol{\mathbf{a}} $ 到 $ \boldsymbol{\mathbf{c}} $ 的线性变换

\begin{equation} \boldsymbol{\mathbf{c}} = \boldsymbol{\mathbf{B}} \boldsymbol{\mathbf{a}} \end{equation}
其中
\begin{equation} \boldsymbol{\mathbf{B}} = \begin{pmatrix} 0 & b_z & -b_y\\ -b_z & 0 & b_x\\ b_y & -b_x & 0 \end{pmatrix} \end{equation}
这恰好与eq. 3 符号相反.

         

© 小时科技 保留一切权利