柱坐标系中的薛定谔方程
 
 
 
 
 
 
 
 
 
 
 
贡献者: 待更新
\begin{equation}
u(r) = \sqrt r R(r)~,
\end{equation}
\begin{equation}
H = K_r + \frac{L_z^2}{2m r^2}~,
\end{equation}
\begin{equation}
K_r R = -\frac{1}{2m} \frac1r \frac{\mathrm{d}}{\mathrm{d}{r}} \left(r \frac{\mathrm{d}{R}}{\mathrm{d}{r}} \right) = - \frac{1}{2m} \frac{1}{\sqrt r} \left( \frac{\mathrm{d}^{2}{u}}{\mathrm{d}{r}^{2}} + \frac{u}{4 r^2} \right) ~,
\end{equation}
\begin{equation}
\frac{L_z^2}{2m r^2}\psi = \frac{1}{2m} \frac{m_z^2}{r^2}\psi ~.
\end{equation}
所以径向方程为
\begin{equation}
- \frac{1}{2m} \frac{\mathrm{d}^{2}{u}}{\mathrm{d}{r}^{2}} + \left[V(r) + \frac{1}{2m} \left(\frac{m_z^2}{r^2} - \frac{1}{4 r^2} \right) \right] u = Eu~.
\end{equation}
 
 
 
 
 
 
 
 
 
 
 
© 小时科技 保留一切权利