贡献者: 待更新
若在 $M$ 维矢量空间中任意给出 $N \leqslant M$ 个线性无关的矢量,如何得到一组正交归一化的基底呢?我们可以用施密特正交归一化(Schmidt orthonormalization)。先看一个二维的例子
例 1 二维空间中的几何矢量
已知两个几何矢量 $ \boldsymbol{\mathbf{v}} _1, \boldsymbol{\mathbf{v}} _2$ 坐标分别为 $(2, 1)$,$(1, 2)$。这两个矢量不共线,说明它们线性无关。但容易看出它们既不归一也不正交,下面来进行施密特正交归一化。
先把 $ \boldsymbol{\mathbf{v}} _1$ 归一化,并记为 $ \boldsymbol{\mathbf{u}} _1$
\begin{equation}
\boldsymbol{\mathbf{u}} _1 = \frac{ \boldsymbol{\mathbf{v}} _1}{ \left\lvert \boldsymbol{\mathbf{v}} _1 \right\rvert } = \frac{1}{\sqrt{5}} (2, 1)~.
\end{equation}
然后,用内积来计算 $ \boldsymbol{\mathbf{v}} _2$ 在 $ \boldsymbol{\mathbf{v}} _1$ 方向的投影长度
\begin{equation}
\boldsymbol{\mathbf{v}} _2 \boldsymbol\cdot \boldsymbol{\mathbf{u}} _1 = \frac{4}{\sqrt{5}}~,
\end{equation}
所以 $ \boldsymbol{\mathbf{v}} _2$ 在平行于 $ \boldsymbol{\mathbf{v}} _1$ 方向的分量为
\begin{equation}
\boldsymbol{\mathbf{v}} _2^{||} = ( \boldsymbol{\mathbf{v}} _2 \boldsymbol\cdot \boldsymbol{\mathbf{u}} _1) \boldsymbol{\mathbf{u}} _1 = \frac{4}{5} (2, 1)~.
\end{equation}
将 $ \boldsymbol{\mathbf{v}} _2$ 减去和 $ \boldsymbol{\mathbf{v}} _1$ 平行的分量,就是和 $ \boldsymbol{\mathbf{v}} _1$ 垂直的分量
\begin{equation}
\boldsymbol{\mathbf{v}} _2^\bot = \boldsymbol{\mathbf{v}} _2 - \boldsymbol{\mathbf{v}} _2^{||} = \left(-\frac35, \frac65 \right) ~,
\end{equation}
归一化并记为
\begin{equation}
\boldsymbol{\mathbf{u}} _2 = \frac{ \boldsymbol{\mathbf{v}} _2^\bot}{ \left\lvert \boldsymbol{\mathbf{v}} _2^\bot \right\rvert } = \frac{1}{3\sqrt{5}} (-3, 6)~.
\end{equation}
现在可以验证,基底 $ \boldsymbol{\mathbf{u}} _1$ 和 $ \boldsymbol{\mathbf{u}} _2$ 是正交归一的,即 $ \left\lvert \boldsymbol{\mathbf{u}} _1 \right\rvert = \left\lvert \boldsymbol{\mathbf{u}} _2 \right\rvert = 1$,且 $ \boldsymbol{\mathbf{u}} _1 \boldsymbol\cdot \boldsymbol{\mathbf{u}} _2 = 0$。
若给出 $M$ 维矢量空间中的 $N$ 个($N \leqslant M$)线性无关矢量
- 将第 1 个矢量归一化得到第 1 个基底
- 将第 2 个矢量分解为与第 1 个矢量平行和垂直的两个分量,并将垂直分量归一化得到第 2 个基底
- 将第 3 个矢量分解为三个部分,即分别平行于前两个基底的分量和一个垂直分量,并将垂直分量归一化得到第 3 个基底
- 对第 $n = 4, \dots , N$ 个基底重复该步骤,得到第 $n$ 个基底
用公式来表示这个过程,就是:
\begin{equation}
\boldsymbol{\mathbf{v}} _1^\bot = \boldsymbol{\mathbf{v}} _1~.
\end{equation}
\begin{equation}
\boldsymbol{\mathbf{u}} _i = \frac{ \boldsymbol{\mathbf{v}} _i^\bot}{ \left\lvert \boldsymbol{\mathbf{v}} _i^\bot \right\rvert } \qquad (i = 1, \dots ,N)~,
\end{equation}
\begin{equation}
\boldsymbol{\mathbf{v}} _i^{||} = \sum _{j=1}^{i-1} ( \boldsymbol{\mathbf{v}} _i \boldsymbol\cdot \boldsymbol{\mathbf{u}} _j) \boldsymbol{\mathbf{u}} _j \qquad (i = 2, \dots N)~,
\end{equation}
\begin{equation}
\boldsymbol{\mathbf{v}} _i^\bot = \boldsymbol{\mathbf{v}} _i - \boldsymbol{\mathbf{v}} _i^{||} \qquad (i = 2, \dots N)~.
\end{equation}
习题 1
对三维空间中的矢量 $(2, 1, 1)$,$(1, 2, 1)$ 和 $(1, 1, 2)$ 进行施密特正交归一化。
1. 推导
这里来解释式 8 和式 9 。我们假设已经知道 $i-1$ 个正交归一的矢量,由于 $N$ 维空间中必然存在 $N$ 个正交归一基底,我们可以设剩下 $u_i$ 的也已经知道(或者可以任意取)。于是 $v_i$ 可以用基底展开为
\begin{equation}
\boldsymbol{\mathbf{v}} _i = \sum _{j=1}^N c_j \boldsymbol{\mathbf{u}} _j~.
\end{equation}
式 8 得到前 $i-i$ 项之和
\begin{equation}
\boldsymbol{\mathbf{v}} _i^{||} = \sum _{j=1}^{i-1} c_j \boldsymbol{\mathbf{u}} _j~,
\end{equation}
所以
式 9 就是第 $i$ 项到第 $N$ 项之和
\begin{equation}
\boldsymbol{\mathbf{v}} _i^\bot = \sum _{j=i}^{N} c_j \boldsymbol{\mathbf{u}} _j~.
\end{equation}
所以对 $j = 1, \dots , i-1$,都有 $ \boldsymbol{\mathbf{v}} _i^\bot \boldsymbol\cdot \boldsymbol{\mathbf{u}} _j = 0$。也就是说和已有的 $i-1$ 个基底都正交。
致读者: 小时百科一直以来坚持所有内容免费,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择大量广告以及内容付费等。 因此,我们请求广大读者
热心打赏 ,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。