泊松括号

             

  • 本词条处于草稿阶段.
Prerequisite 哈密顿正则方程

   给定函数 $u(q, p, t)$ 和 $v(q, p, t)$,定义泊松括号为

\begin{equation} \left\{u, v\right\} = \sum_i \frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial v}{\partial q_i} \frac{\partial u}{\partial p_i} \end{equation}
容易证明泊松括号满足
\begin{equation} \left\{v, u\right\} = - \left\{u, v\right\} \end{equation}

泊松括号与守恒量

   对任意不显含时的物理量 $\omega (q,p)$ 都有

\begin{equation} \dot \omega = \sum_i \left( \frac{\partial \omega}{\partial q_i} \dot q_i + \frac{\partial \omega}{\partial p_i} \dot p_i \right) = \sum_i \left( \frac{\partial \omega}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial q_i} \frac{\partial \omega}{\partial p_i} \right) = \left\{\omega, H\right\} \end{equation}
所以若泊松括号恒等于零,则该物理量守恒.

   同理,当 $\omega (q,p,t)$ 显含时间时有

\begin{equation} \dot \omega = \left\{\omega, H\right\} + \frac{\partial \omega}{\partial t} \end{equation}

   量子力学中的对易算符对应泊松括号.该式对应量子力学中的算符平均值演化方程.

         

© 小时科技 保留一切权利