The Wayback Machine - https://web.archive.org/web/20221028210715/https://baike.sogou.com/kexue/d17016356457153035.htm

迁移学习

编辑
迁移学习示意图

迁移学习(transfer learning)是机器学习中的一大类学习方法。通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三。由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识。比如,已经会下中国象棋,就可以类比着来学习国际象棋等等。世间万事万物皆有共性,如何合理地找寻它们之间的相似性,进而利用这个桥梁来帮助学习新知识,是迁移学习的核心问题。

1 简介编辑

具体地,在迁移学习中,我们已有的知识叫做源域(source domain),要学习的新知识叫目标域(target domain)。迁移学习研究如何把源域的知识迁移到目标域上。特别地,在机器学习领域中,迁移学习研究如何将已有模型应用到新的不同的、但是有一定关联的领域中。传统机器学习在应对数据的分布、维度,以及模型的输出变化等任务时,模型不够灵活、结果不够好,而迁移学习放松了这些假设。在数据分布、特征维度以及模型输出变化条件下,有机地利用源域中的知识来对目标域更好地建模。另外,在有标定数据缺乏的情况下,迁移学习可以很好地利用相关领域有标定的数据完成数据的标定。[1][2]

2 基本信息编辑

迁移学习按照学习方式可以分为基于样本的迁移,基于特征的迁移,基于模型的迁移,以及基于关系的迁移。基于样本的迁移通过对源域中有标定样本的加权利用完成知识迁移;基于特征的迁移通过将源域和目标域映射到相同的空间(或者将其中之一映射到另一个的空间中)并最小化源域和目标域的距离来完成知识迁移;基于模型的迁移将源域和目标域的模型与样本结合起来调整模型的参数;基于关系的迁移则通过在源域中学习概念之间的关系,然后将其类比到目标域中,完成知识的迁移。

理论上,任何领域之间都可以做迁移学习。但是,如果源域和目标域之间相似度不够,迁移结果并不会理想,出现所谓的负迁移情况。比如,一个人会骑自行车,就可以类比学电动车;但是如果类比着学开汽车,那就有点天方夜谭了。如何找到相似度尽可能高的源域和目标域,是整个迁移过程最重要的前提。

迁移学习方面,代表人物有香港科技大学的Qiang Yang教授,南洋理工大学的Sinno Jialin Pan,以及第四范式的CEO戴文渊等。代表文献是Sinno Jialin Pan和Qiang Yang的A survey on transfer learning。迁移学习领域的入门手册请见《迁移学习简明手册》。

参考文献

  • [1]

    ^迁移学习简明手册.迁移学习简明手册.

  • [2]

    ^Sinno Pan, Qiang Yang.《A survey on transfer learning》.IEEE,2010,

阅读 1.1w
版本记录
  • 暂无