1900年,德国诺贝尔奖得主保罗·埃利希(Paul Ehrlich)构想出只针对肿瘤细胞,而忽略其他细胞的药物。[7]
2001年,辉瑞/惠氏的药物吉妥单抗(商品名:Mylotarg)获得批准。然而,应美国食品和药物管理局(FDA)的要求,该公司于2010年6月将该药物撤市。[7] 该药物于2017年被重新引入美国市场。[8]
本妥昔单抗 (商品名: Adcetris,由西雅图遗传学和千禧塔/武田制药投入市场)[9] 于2011年8月19日被FDA批准,用于治疗复发性霍奇金淋巴瘤和复发性系统性间变性大细胞淋巴瘤,并于2012年10月获得欧洲药品管理局的条件性营销授权。
曲妥珠单抗-Emtansine (ado-trastuzumab emtansine或T-DM1,商品名:Kadcyla,由基因泰克和罗氏投入市场)于2013年2月获得批准,用于治疗曾接受过曲妥珠单抗和紫杉烷化疗的HER2阳性转移性乳腺癌患者(mBC)。[10][11]
2017年6月30日,欧盟委员会批准将伊珠单抗-奥加米星[12] 作为成人复发或难治性CD22阳性B细胞前体急性淋巴细胞白血病(ALL)的单一疗法。该药物商品名为Besponsa (辉瑞/惠氏),[13]随后于2017年8月17日被FDA批准。[14]
首个免疫学抗体-药物偶联物(iADC)ABBV-3373,正在中、重度类风湿性关节炎患者身上进行临床试验。[15]
2019年阿斯利康同意支付高达69亿美元,与日本第一三共株式会社共同研发DS-8201。DS-8201旨在取代赫赛汀用于治疗乳腺癌。DS8201携带八个毒素,而其他药物通常只携带四个。[7]
五个上市的ADCs——均用于肿瘤治疗。
药物 | 生产商 | 适应症 | 商品名 |
---|---|---|---|
Gemtuzumab ozogamicin | 辉瑞/惠氏 | 复发性急性骨髓性白血病(AML) | Mylotarg |
Brentuximab vedotin | 西雅图遗传学公司,千禧年/武田制药 | 复发性霍奇金淋巴瘤和复发性系统性间变性大细胞淋巴瘤 | Adcetris |
Trastuzumab emtansine | 罗氏基因泰克公司 | 经曲妥珠单抗和紫杉烷治疗的HER2阳性转移性乳腺癌(mBC) | Kadcyla |
Inotuzumab ozogamicin | 辉瑞/惠氏 | 复发性或难治性CD22阳性B细胞前体急性淋巴细胞白血病 | Besponsa |
Polatuzumab vedotin-piiq[16] |
罗氏基因泰克公司 | 复发性或难治性弥漫大B细胞淋巴瘤 | Polivy |
抗体和细胞毒性(抗癌)剂之间的稳定连接是ADC的一个重要方面。[17] 稳定的ADC连接子可确保其在到达肿瘤细胞前,有较少的细胞毒性药物脱落,提高安全性并降低剂量。
连接子基于化学模序,包括二硫化物、腙或肽(可裂解)或硫醚(不可裂解)。临床前和临床试验证明,可裂解和不可裂解的连接子均是安全的。本妥昔单抗包括一种酶敏感的可裂连接子,该连接子将抗微管剂单甲基奥瑞他汀E,即MMAE——一种合成抗肿瘤药递送至人类特异性CD30阳性恶性细胞。MMAE通过阻断微管蛋白的聚合来抑制细胞分裂。由于其高毒性,MMAE不能用作单一化疗药物。然而,与抗CD30单克隆抗体(cAC10,肿瘤坏死因子或肿瘤坏死因子受体的细胞膜蛋白)相连的MMAE在细胞外液中是稳定的。它可被组织蛋白酶裂解,治疗安全。Trastuzumab emtansine由微管形成抑制剂mertansine (DM-1)和抗体曲妥珠单抗组成,使用的是稳定、不可裂解的连接子。
更好更稳定的连接子的出现改变了化学键的功能。连接子的类型——可裂解或不可裂解,赋予细胞毒性药物特定的性质。例如,不可裂解的连接子将药物保留在细胞内。于是,整个抗体、连接子和细胞毒性(抗癌)剂进入目标癌细胞,抗体在癌细胞内被降解成氨基酸。由此产生的化合物——氨基酸、连接子及细胞毒剂——被认为是活性药物。相反,可裂解的连接子被癌细胞中的酶分离。随后,细胞毒性物质可以从靶向细胞中逃逸,通过“旁观者效应”攻击邻近细胞。[18]
目前正在开发的另一种可裂解连接子在细胞毒素和裂解位点之间增加了一个额外的分子。这使得研究人员能够在不改变裂解动力学的情况下制造出更具灵活性的ADCs。研究人员正在开发一种基于埃德曼降解——一种对多肽中氨基酸进行测序的方法的肽切割新方法。[19] 目前正在开发的还有位点特异性偶联技术(TDCs)[20] ,旨在进一步提高稳定性和治疗指数的新偶联技术,[21][22] α粒子免疫偶联物和抗体偶联的纳米颗粒。[23] [24] [25]
第一代使用将药物非选择性地偶联到抗体中的半胱氨酸或赖氨酸残基上的连接技术,得到异质混合物。这种方法的安全性和有效性并不理想,并使其生物、物理和药理特性的优化变得复杂 。[26] 非天然氨基酸的位点特异性结合能产生受控且稳定附着的位点。这样能够生产出抗体与药物精确连接的均质ADCs,并能通过控制抗体与药物的比例,选择出同类中最优的ADC。[26] 利用基于大肠杆菌的开放式无细胞合成法(OCFS)能够合成含有位点特异性非天然氨基酸的蛋白质,且该方法已被优化用于可预测的高产蛋白质的合成和折叠。细胞壁的缺失允许向系统中加入非天然因子来操纵转录、翻译和折叠,以精确调控蛋白质的表达。[27]
大多数正在开发或处于临床试验中的ADCs是用于肿瘤和血液病。[28] 这主要是由针对各种癌症的单克隆抗体推动的。然而,一些开发人员正期望将这一应用扩展到其他重要的疾病领域上。[29][30]
^"Antibody-Drug Conjugates Stage a Comeback". March 9, 2010..
^Dijoseph, JF; Armellino, DC; Boghaert, ER; Khandke, K; Dougher, MM; Sridharan, L; Kunz, A; Hamann, PR; Gorovits, B; Udata, C; Moran, JK; Popplewell, AG; Stephens, S; Frost, P; Damle, NK (2004). "Antibody-targeted chemotherapy with CMC-544: A CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies". Blood. 103 (5): 1807–14. doi:10.1182/blood-2003-07-2466. PMID 14615373..
^Mullard, Asher (2013). "Maturing antibody–drug conjugate pipeline hits 30". Nature Reviews Drug Discovery. 12 (5): 329–32. doi:10.1038/nrd4009. PMID 23629491..
^Chari, Ravi V. J.; Martell, Bridget A.; Gross, Jonathan L.; Cook, Sherrilyn B.; Shah, Sudhir A.; Blättler, Walter A.; McKenzie, Sara J.; Goldmacher, Victor S. (1992). "Immunoconjugates containing novel maytansinoids: promising anticancer drugs". Cancer Research. 52 (1): 127–31. PMID 1727373..
^[1], Pollack A. May 31, 2012. In print on June 1, 2012, on page B1 of the New York edition with the headline: A One-Two Punch..
^[2], Published June 3, 2012.
^Matsuyama, Kanoko (2019-06-11). "Drug to replace chemotherapy may reshape cancer care". BNN Bloomberg. Retrieved 2019-06-14..
^"Approved Drugs > FDA Approves Gemtuzumab Ozogamicin for CD33-positive AML". fda.gov. Silver Spring, USA: U.S. Food and Drug Administration. 1 September 2017. Retrieved 6 September 2017..
^Brentuximab vedotin (SGN35), ADC Review/Journal of Antibody-drug Conjugates.
^FDA Approves Genentech's Kadcyla® (Ado-Trastuzumab Emtansine), the First Antibody-Drug Conjugate for Treating Her2-Positive Metastatic Breast Cancer [3].
^Ado-trastuzumab emtansine (U.S. Department of Health and Human Services | National Institutes of Health | National Cancer Institute.) [4].
^Inotuzumab ozogamicin (drug description), ADC Review/Journal of Antibody-drug Conjugates [5].
^BESPONSA® Approved in the EU for Adult Patients with Relapsed or Refractory B-cell Precursor Acute Lymphoblastic Leukemia [6].
^U.S. FDA Approves Inotuzumab Ozogamicin for Treatment of Patients with R/R B-cell precursor Acute Lymphoblastic Leukemia, ADC Review/Journal of Antibody-drug Conjugates, August 17, 2017 [7].
^"A Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of ABBV-3373 in Participants With Moderate to Severe Rheumatoid Arthritis - Full Text View - ClinicalTrials.gov". clinicaltrials.gov..
^Commissioner, Office of the (2019-06-10). "FDA approves first chemoimmunotherapy regimen for patients with relapsed or refractory diffuse large B-cell lymphoma". FDA (in 英语). Retrieved 2019-06-14..
^Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. (2017). "Strategies and challenges for the next generation of antibody-drug conjugates". Chem. Soc. Rev. 19 (16): 315–337. doi:10.1038/nrd.2016.268. PMID 28303026..
^Kovtun, YV; Goldmacher, VS (2007). "Cell killing by antibody-drug conjugates". Cancer Letters. 255 (2): 232–40. doi:10.1016/j.canlet.2007.04.010. PMID 17553616..
^Bąchor, R; Kluczyk, A; Stefanowicz, P; Szewczuk, Z (2013). "New method of peptide cleavage based on Edman degradation". Molecular Diversity. 17 (3): 605–11. doi:10.1007/s11030-013-9453-y. PMC 3713267. PMID 23690169..
^Axup, J. Y.; Bajjuri, K. M.; Ritland, M.; Hutchins, B. M.; Kim, C. H.; Kazane, S. A.; Halder, R.; Forsyth, J. S.; Santidrian, A. F.; Stafin, K.; Lu, Y.; Tran, H.; Seller, A. J.; Biroc, S. L.; Szydlik, A.; Pinkstaff, J. K.; Tian, F.; Sinha, S. C.; Felding-Habermann, B.; Smider, V. V.; Schultz, P. G. (2012). "Synthesis of site-specific antibody-drug conjugates using unnatural amino acids". Proceedings of the National Academy of Sciences. 109 (40): 16101–6. doi:10.1073/pnas.1211023109. PMC 3479532. PMID 22988081..
^Lyon, R.P.; Setter, J.R.; Bovee, T.D.; Doronina, S.O.; Hunter, J.H.; Anderson M.E.; Balasubramanian, C.L.; Duniho, S.M.; Leiske, C.I.; Li, F.; Senter, P.D. (2014). "Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates". Bioconjugate Chem. 32 (10): 1059–1062. doi:10.1038/nbt.2968. PMID 25194818..
^Kolodych, S.; Koniev, O.; Baatarkhuu, Z.; Bonnefoy, J.-Y.; Debaene, F.; Chienférani, S.; Dorsselaer, A.; Wagner, A. (2015). "CBTF: new amine-to-thiol coupling reagent for preparation of antibody conjugates with increased plasma stability". Bioconjugate Chem. 26 (2): 197–200. doi:10.1021/bc500610g. PMID 25614935..
^Wulbrand, C; Seidl, C; Gaertner, FC; Bruchertseifer, F; Morgenstern, A; Essler, M; Senekowitsch-Schmidtke, R (2013). Multhoff, Gabriele, ed. "Alpha-particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation". PLoS ONE. 8 (5): e64730. doi:10.1371/journal.pone.0064730. PMC 3665541. PMID 23724085..
^Cardoso, MM; Peça, IN; Roque, AC (2012). "Antibody-conjugated nanoparticles for therapeutic applications". Current Medicinal Chemistry. 19 (19): 3103–27. doi:10.2174/092986712800784667. PMID 22612698..
^Dovgan, Igor; Koniev, Oleksandr; Kolodych, Sergii; Wagner, Alain (2019). "Antibody–Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents". Bioconjugate Chemistry. doi:10.1021/acs.bioconjchem.9b00306. ISSN 1043-1802..
^Axup, JY; Bajjuri, KM; Ritland, M; et al. (October 2012). "Synthesis of site-specific antibody-drug conjugates using unnatural amino acids". Proc. Natl. Acad. Sci. U.S.A. 109 (40): 16101–6. doi:10.1073/pnas.1211023109. PMC 3479532. PMID 22988081..
^Zawada, JF; Yin, G; Steiner, AR; Yang, J; Naresh, A; Roy, SM; Gold, DS; Heinsohn, HG; Murray, CJ (2011). "Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines". Biotechnol Bioeng. 108 (7): 1570–8. doi:10.1002/bit.23103. PMC 3128707. PMID 21337337..
^Flygare, John A.; Pillow, Thomas H.; Aristoff, Paul (2013). "Antibody-Drug Conjugates for the Treatment of Cancer". Chemical Biology & Drug Design. 81 (1): 113–121. doi:10.1111/cbdd.12085. PMID 23253133..
^Lehar, Sophie M.; Pillow, Thomas; Xu, Min; Staben, Leanna; Kajihara, Kimberly K.; Vandlen, Richard; DePalatis, Laura; Raab, Helga; Hazenbos, Wouter L.; Morisaki, J. Hiroshi; Kim, Janice; Park, Summer; Darwish, Martine; Lee, Byoung-Chul; Hernandez, Hilda; Loyet, Kelly M.; Lupardus, Patrick; Fong, Rina; Yan, Donghong; Chalouni, Cecile; Luis, Elizabeth; Khalfin, Yana; Plise, Emile; Cheong, Jonathan; Lyssikatos, Joseph P.; Strandh, Magnus; Koefoed, Klaus; Andersen, Peter S.; Flygare, John A.; Tan, Man Wah; Brown, Eric J.; Mariathasan, Sanjeev (2015). "Novel antibody–antibiotic conjugate eliminates intracellular S. aureus". Nature. 527 (7578): 323–328. doi:10.1038/nature16057. PMID 26536114..
^Ambrx Collaborates with Merck to Design and Develop Biologic Drug Conjugates "Archived copy". Archived from the original on 2013-01-07. Retrieved 2013-06-30.CS1 maint: Archived copy as title (link).
暂无