石墨相氮化碳(g-C3N4)是一种碳氮化合物,其通式接近C3N4(尽管通常含有非零量的氢),庚嗪和聚三嗪酰亚胺是其两个主要的基础结构,它们根据反应条件展示出不同程度的缩合、性质和反应活性。
石墨相氮化碳可以通过氨基氰、双氰胺或三聚氰胺的聚合来制备。首先形成的聚合的C3N4结构,Melon,具有侧氨基,是一种高度有序的聚合物。接下来的反应会产生进一步的缩合反应导致缺陷C3N4减少,产物以三-均三嗪(C6N7)为单体。[2]
在室温下,通过从三聚氰酰氯和三聚氰胺(比例= 1∶1.5)的饱和丙酮溶液中,在硅(100)基体上进行电沉积,也可以制备石墨相氮化碳。[3]
可以让C3N3Cl3和NaNH2在180-220℃下苯热反应8-12小时来制备结晶良好的石墨相氮化碳纳米晶体。[4]
最近,科学家们报道了在氧化铝存在下,通过在400-600℃加热三聚氰胺和尿酸的混合物来合成石墨相碳氮化物的新方法。氧化铝有利于石墨相碳氮化物层在暴露表面的沉积。这种方法可以等同于原位化学气相沉积(CVD)。[5]
g-C3N4晶体的表征可以通过用X-射线光电子能谱(XPS)、光致发光光谱和傅里叶变换红外光谱(FTIR,峰值在800cm-1、1310cm-1和1610cm-1)鉴别其中存在的三嗪环来进行。[4]
由于石墨相氮化碳的性质(主要是宽的可调带隙和高效的盐插层),科学家们对其在各个领域的应用进行了研究:
^Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong (2016). "Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water". Scientific Reports. 6: 28558. Bibcode:2016NatSR...628558C. doi:10.1038/srep28558. PMC 4916514. PMID 27328834..
^Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J. M. (2008). "Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and their Use as Metal-Free Catalysts". Journal of Materials Chemistry. 18 (41): 4893–4908. CiteSeerX 10.1.1.529.6230. doi:10.1039/b800274f..
^Li, C.; Cao, C.; Zhu H. (2003). "Preparation of Graphitic Carbon Nitride by Electrodeposition". Chinese Science Bulletin. 48 (16): 1737–1740. doi:10.1360/03wb0011..
^Guo, Q. X.; Xie, Y.; Wang, X. J.; Lv, S. C.; Hou, T.; Liu, X. M. (2003). "Characterization of Well-Crystallized Graphitic Carbon Nitride Nanocrystallites via a Benzene-Thermal Route at Low Temperatures". Chemical Physics Letters. 380 (1–2): 84–87. Bibcode:2003CPL...380...84G. doi:10.1016/j.cplett.2003.09.009..
^Dante, R. C.; Martín-Ramos, P.; Correa-Guimaraes, A.; Martín-Gil, J. (2011). "Synthesis of Graphitic Carbon Nitride by Reaction of Melamine and Uric Acid". Materials Chemistry and Physics. 130 (3): 1094–1102. doi:10.1016/j.matchemphys.2011.08.041..
^"Nicanite, Graphitic Carbon Nitride". Carbodeon..
^Nair, Asalatha A. S.; Sundara, Ramaprabhu; Anitha, N. (2015-03-02). "Hydrogen storage performance of palladium nanoparticles decorated graphitic carbon nitride". International Journal of Hydrogen Energy. 40 (8): 3259–3267. doi:10.1016/j.ijhydene.2014.12.065..
^Nair, Asalatha A. S.; Sundara, Ramaprabhu (2016-05-12). "Palladium Cobalt Alloy Catalyst Nanoparticles Facilitated Enhanced Hydrogen Storage Performance of Graphitic Carbon Nitride". The Journal of Physical Chemistry C. 120 (18): 9612–9618. doi:10.1021/acs.jpcc.6b01850..
^Wang, Xinchen; Maeda, Kazuhiko; Thomas, Arne; Takanabe, Kazuhiro; Xin, Gang; Carlsson, Johan M.; Domen, Kazunari; Antonietti, Markus (2009). "A metal-free polymeric photocatalyst for hydrogen production from water under visible light". Nature Materials. 8 (1): 76–80. doi:10.1038/nmat2317..
^Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David (2016). "Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers". Electrochimica Acta. 222: 44–57. doi:10.1016/j.electacta.2016.11.008..
^Thomas, Arne; Fischer, Anna; Goettmann, Frederic; Antonietti, Markus; Müller, Jens-Oliver; Schlögl, Robert; Carlsson, Johan M. (2008-10-14). "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts". Journal of Materials Chemistry (in 英语). 18 (41): 4893. CiteSeerX 10.1.1.529.6230. doi:10.1039/b800274f. ISSN 1364-5501..
^Niu P, Zhang L L, Liu G, Cheng H M et al. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770..
^Zhang L Q, He X, Xu X W et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectralresponse towards selective reduction of nitrobenzene[J]. Applied Catalysis B: Environmental. 2017, 203:65-71..
^Dong F, Li Y H, Wang Z Y, Ho W K et al. Enhanced visible light photocatalytic activity and oxidation ability ofporous graphene-like g-C3N4nanosheets via thermal exfoliation[J]. Applied Surface Science, 2015, 358: 393–403..
^Mishra A K, Mamba G et al. Graphic carbon nitride nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B, 2016, 21: 351-371..
^Wu, Menghao; Wang, Qian; Sun, Qiang; Jena, Puru (2013-03-28). "Functionalized Graphitic Carbon Nitride for Efficient Energy Storage". The Journal of Physical Chemistry C. 117 (12): 6055–6059. doi:10.1021/jp311972f. ISSN 1932-7447..
暂无