The Wayback Machine - https://web.archive.org/web/20221025181438/https://baike.sogou.com/kexue/d10600.htm

石墨相氮化碳

编辑
块状g-C3N4(左)和g-C3N4纳米片粉末对比图(两者各100 mg)。[1]

石墨相氮化碳(g-C3N4)是一种碳氮化合物,其通式接近C3N4(尽管通常含有非零量的氢),庚嗪和聚三嗪酰亚胺是其两个主要的基础结构,它们根据反应条件展示出不同程度的缩合、性质和反应活性。

1 制备编辑

石墨相氮化碳可以通过氨基氰、双氰胺或三聚氰胺的聚合来制备。首先形成的聚合的C3N4结构,Melon,具有侧氨基,是一种高度有序的聚合物。接下来的反应会产生进一步的缩合反应导致缺陷C3N4减少,产物以三-均三嗪(C6N7)为单体。[2]

在室温下,通过从三聚氰酰氯和三聚氰胺(比例= 1∶1.5)的饱和丙酮溶液中,在硅(100)基体上进行电沉积,也可以制备石墨相氮化碳。[3]

可以让C3N3Cl3和NaNH2在180-220℃下苯热反应8-12小时来制备结晶良好的石墨相氮化碳纳米晶体。[4]

最近,科学家们报道了在氧化铝存在下,通过在400-600℃加热三聚氰胺和尿酸的混合物来合成石墨相碳氮化物的新方法。氧化铝有利于石墨相碳氮化物层在暴露表面的沉积。这种方法可以等同于原位化学气相沉积(CVD)。[5]

2 表征编辑

g-C3N4晶体的表征可以通过用X-射线光电子能谱(XPS)、光致发光光谱和傅里叶变换红外光谱(FTIR,峰值在800cm-1、1310cm-1和1610cm-1)鉴别其中存在的三嗪环来进行。[4]

3 性能编辑

由于石墨相氮化碳的特殊半导体性质,它们对各种反应表现出超乎预料的催化活性,例如对苯的活化、三聚反应以及二氧化碳的活化(人工光合作用)。[2]

4 应用编辑

一种商用石墨相氮化碳的品牌是Nicanite。微米尺度的石墨相氮化碳可应用于摩擦涂层、生物相容性医用涂层、化学惰性涂层、绝缘体和储能溶液。[6]据报道,石墨相氮化碳是最好的储氢材料之一。[7][8] 它也可以用作催化纳米粒子的载体。[1]

5 兴趣领域编辑

由于石墨相氮化碳的性质(主要是宽的可调带隙和高效的盐插层),科学家们对其在各个领域的应用进行了研究:

  • 光催化剂
    • g-C3N4能够催化水分解成H2和O2[9]
    • g-C3N4能够催化污染物降解
  • 宽带隙半导体[10]
  • 多相催化剂和载体
    • g-C3N4优异的弹性结合其表面和层内反应活性,使得它们通过不稳定的质子和路易斯碱官能团而成为潜在的高效催化剂。此外,还可以利用掺杂、质子化和分子功能化等修饰方法来提高其选择性和其他性质。[11]
    • 负载在g-C3N4上的纳米粒子催化剂在质子交换膜燃料电池和电解水器中得到了广泛应用。[10]
    • 尽管石墨相氮化碳具有一些优点,如温和的带隙(2.7 eV)、能够可见光吸收和具有柔韧性,但由于可见光利用效率低、光生电荷载流子复合率高、电导率低和比表面积低(< 10 m2g -1),其在实际应用中仍有局限性。[12]为了弥补这些不足,最有吸引力的方法之一是在石墨相氮化碳中掺杂碳纳米材料,如碳纳米管。首先,碳纳米管具有较大的比表面积,因此它们可以提供更多的位点分离电荷载流子,进而降低电荷载流子的复合率,进一步提高还原反应的活性。[13]其次,碳纳米管具有较高的电子传导能力,这意味着它们可以改善石墨相氮化碳的可见光响应、有效的电荷载流子分离和转移,从而改善其电子性能。[14]第三,碳纳米管可以被视为一种窄带半导体材料,也称为光敏剂,它可以扩大半导体光催化材料的光吸收范围,从而提高其对可见光的利用率。[15]
  • 储能材料
    • 由于除层间嵌入之外,层内空隙使得锂在石墨相氮化碳的嵌入比其嵌入石墨时具有更多的位点,因此g-C3N4可以储存大量的锂,[16]使得它们具有应用于可充电电池的潜能。

参考文献

  • [1]

    ^Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong (2016). "Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water". Scientific Reports. 6: 28558. Bibcode:2016NatSR...628558C. doi:10.1038/srep28558. PMC 4916514. PMID 27328834..

  • [2]

    ^Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J. M. (2008). "Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and their Use as Metal-Free Catalysts". Journal of Materials Chemistry. 18 (41): 4893–4908. CiteSeerX 10.1.1.529.6230. doi:10.1039/b800274f..

  • [3]

    ^Li, C.; Cao, C.; Zhu H. (2003). "Preparation of Graphitic Carbon Nitride by Electrodeposition". Chinese Science Bulletin. 48 (16): 1737–1740. doi:10.1360/03wb0011..

  • [4]

    ^Guo, Q. X.; Xie, Y.; Wang, X. J.; Lv, S. C.; Hou, T.; Liu, X. M. (2003). "Characterization of Well-Crystallized Graphitic Carbon Nitride Nanocrystallites via a Benzene-Thermal Route at Low Temperatures". Chemical Physics Letters. 380 (1–2): 84–87. Bibcode:2003CPL...380...84G. doi:10.1016/j.cplett.2003.09.009..

  • [5]

    ^Dante, R. C.; Martín-Ramos, P.; Correa-Guimaraes, A.; Martín-Gil, J. (2011). "Synthesis of Graphitic Carbon Nitride by Reaction of Melamine and Uric Acid". Materials Chemistry and Physics. 130 (3): 1094–1102. doi:10.1016/j.matchemphys.2011.08.041..

  • [6]

    ^"Nicanite, Graphitic Carbon Nitride". Carbodeon..

  • [7]

    ^Nair, Asalatha A. S.; Sundara, Ramaprabhu; Anitha, N. (2015-03-02). "Hydrogen storage performance of palladium nanoparticles decorated graphitic carbon nitride". International Journal of Hydrogen Energy. 40 (8): 3259–3267. doi:10.1016/j.ijhydene.2014.12.065..

  • [8]

    ^Nair, Asalatha A. S.; Sundara, Ramaprabhu (2016-05-12). "Palladium Cobalt Alloy Catalyst Nanoparticles Facilitated Enhanced Hydrogen Storage Performance of Graphitic Carbon Nitride". The Journal of Physical Chemistry C. 120 (18): 9612–9618. doi:10.1021/acs.jpcc.6b01850..

  • [9]

    ^Wang, Xinchen; Maeda, Kazuhiko; Thomas, Arne; Takanabe, Kazuhiro; Xin, Gang; Carlsson, Johan M.; Domen, Kazunari; Antonietti, Markus (2009). "A metal-free polymeric photocatalyst for hydrogen production from water under visible light". Nature Materials. 8 (1): 76–80. doi:10.1038/nmat2317..

  • [10]

    ^Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David (2016). "Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers". Electrochimica Acta. 222: 44–57. doi:10.1016/j.electacta.2016.11.008..

  • [11]

    ^Thomas, Arne; Fischer, Anna; Goettmann, Frederic; Antonietti, Markus; Müller, Jens-Oliver; Schlögl, Robert; Carlsson, Johan M. (2008-10-14). "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts". Journal of Materials Chemistry (in 英语). 18 (41): 4893. CiteSeerX 10.1.1.529.6230. doi:10.1039/b800274f. ISSN 1364-5501..

  • [12]

    ^Niu P, Zhang L L, Liu G, Cheng H M et al. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770..

  • [13]

    ^Zhang L Q, He X, Xu X W et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectralresponse towards selective reduction of nitrobenzene[J]. Applied Catalysis B: Environmental. 2017, 203:65-71..

  • [14]

    ^Dong F, Li Y H, Wang Z Y, Ho W K et al. Enhanced visible light photocatalytic activity and oxidation ability ofporous graphene-like g-C3N4nanosheets via thermal exfoliation[J]. Applied Surface Science, 2015, 358: 393–403..

  • [15]

    ^Mishra A K, Mamba G et al. Graphic carbon nitride nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B, 2016, 21: 351-371..

  • [16]

    ^Wu, Menghao; Wang, Qian; Sun, Qiang; Jena, Puru (2013-03-28). "Functionalized Graphitic Carbon Nitride for Efficient Energy Storage". The Journal of Physical Chemistry C. 117 (12): 6055–6059. doi:10.1021/jp311972f. ISSN 1932-7447..

阅读 203
版本记录
  • 暂无