The Wayback Machine - https://web.archive.org/web/20221025124216/https://baike.sogou.com/kexue/d10538.htm

农杆菌

编辑

农杆菌是康恩发现的一个革兰氏阴性菌属,它通过基因水平转移在植物中引起肿瘤。根癌农杆菌是该属中最常研究的物种。众所周知农杆菌具有能够在自身和植物之间转移DNA的能力,因此它已经成为基因工程研究中的重要工具。

农杆菌属种类非常多。最近的分类学研究已经将所有的土壤杆菌种重新分类为新属,例如阿伦西氏菌属、假红细菌属、鲁杰氏菌属和斯塔皮亚属,[1][2] 但是大多数种虽然有争议,但仍然重新分类为根瘤菌种。[3][4][5]

1 植物病原体编辑

在植物根上的突出生长部位是土壤杆菌属诱导的冠瘿瘤。

根癌农杆菌引起植物冠瘿病。通常这种疾病的特征是在受感染的植物上,在根和茎的交界处,有瘤状的增生物或冠瘿瘤。植物冠瘿瘤是由细菌肿瘤诱导质粒(Ti)中的一个DNA片段(T-DNA)的结合转移引起的。与根癌农杆菌相近的物种发根农杆菌也能诱导冠瘿瘤,并携带独特的Ri(根诱导)质粒。尽管农杆菌的分类学目前仍在修订完善,但在该属中大致存在3个生物变种,即根癌农杆菌、发根农杆菌和葡萄农杆菌。已知根癌农杆菌和发根农杆菌中的菌株能够携带Ti质粒或Ri质粒,而葡萄农杆菌菌株(通常限于葡萄树)能够携带Ti质粒。实验室研究表明从环境样品分离得到的非农杆菌菌株也可以含有Ti质粒,并且这些非农杆菌菌株同样含有Ri质粒。一些环境土壤杆菌既没有Ti质粒也没有Ri质粒,这些菌株则是无毒的。[6]

质粒T-DNA被半随机地整合到宿主细胞基因组中,[7] 并且在T-DNA的导致冠瘿瘤形成的基因表达,导致冠瘿瘤的形成。T-DNA携带用于产生非常见氨基酸的生物合成酶的基因,比如说常用的章鱼碱或胭脂碱。它还携带植物激素、生长素和细胞分裂素的生物合成基因,以及冠瘿碱的生物合成基因,为大多数其他微生物不能使用的细菌提供碳源和氮源,使农杆菌具有相对生长优势。[8] 通过改变植物细胞中的激素平衡,这些细胞的分裂不受植物控制,进一步导致冠瘿瘤形成。冠瘿瘤基因产生的生长素和细胞分裂素的比例决定了冠瘿瘤的形态(根状、无特定形状或芽状)。

2 对人类的影响编辑

虽然农杆菌通常被认为能感染植物,有人认为其仍然可能是通过削弱人类免疫系统从而导致人类发生机会性感染,[9][10] 但在其他健康个体中并未被证明其是感染的主要病原体。最早由苏格兰的凯恩博士(1988)报道放射土壤杆菌能够引起的人类疾病成因之一。[11] 随后有研究表明,农杆菌通过将其T-DNA整合到人类细胞基因组中,附着并能够通过遗传转化的方式转变几种类型的人类细胞。这项研究是针对人工培养的人类组织来做的,这并没有证明农杆菌可以在自然界中感染人类。[12]

3 生物技术中的应用编辑

我们将农杆菌能够将基因转移到植物和真菌的能力应用于生物技术方面,特别是用于植物改良基因工程方面。可以使用改造的Ti或Ri质粒来实现。质粒通过冠瘿瘤诱导基因的缺失能够消除其毒性;T-DNA的必须部分是它的两个小的(25个碱基对)边界重复序列,其中至少有一个是植物转化所必需的。 将导入植物的基因克隆到植物转化载体中,该载体包含去除毒性基因质粒的T-DNA区域,以及筛选标记(如抗生素抗性标记),从而能够选择转化成功的阳性植物。转化后植物生长在含有抗生素的培养基上,那些T-DNA没有整合到基因组中的的植物将会死亡。另一种方法是农杆菌渗入法。[13][14]

利用农杆菌介导转化的植物(马铃薯)。转化的细胞开始在叶片伤口侧面形成愈伤组织。

利用农杆菌介导的转化可以通过多种方式实现。原生质体或叶盘可以与农杆菌一起培养实现转化,整个植物的转化可以用植物组织培养技术进而进行转基因植物的构建。农杆菌渗入法则是将农杆菌可以直接注射到植物的叶片组织中。该方法仅转化与农杆菌直接接触的细胞,并导致质粒DNA片段的瞬时表达。[15]

农杆菌渗入法通常用于转化烟草(本氏烟草).。拟南芥的一种常见转化方法是浸花法:[16] 将花序浸在农杆菌悬浮液中,农杆菌可以转化产生雌配子的生殖细胞。然后可以对种子进行抗生素抗性筛选(或另一种需要的标记),基因组中没有整合质粒DNA的植物在生长在相应抗生素条件下会死亡。[13]

农杆菌不会感染所有的植物物种,但是还可以利用基因枪等几种有效的植物转化技术。

农杆菌介导的遗传转化已经美国GMOs用在一下物种的的遗传转化中:[17]

  • 大豆
  • 棉花
  • 玉米
  • 糖用甜菜
  • 苜蓿
  • 小麦
  • 油菜
  • 匍匐翦股颖(用作动物饲料)
  • 大米(黄金大米)

4 基因组学编辑

几个农杆菌属物种基因组测序的完成能够帮助对这些生物体的进化史进行研究,并提供了与农杆菌是如何导致植物发病、农杆菌对生物控制和农杆菌是如何与植物共生有关的机制实现基因层面和系统性分析。一个重要的发现是染色体有可能在细菌进化过程中从质粒进化而来。另一个发现是,这个群体中不同的染色体结构似乎能够支持共生和致病的生活方式。可用的农杆菌属物种基因组序列会继续增多,从而对与植物相关微生物的功能和进化史更详尽的了解。[18]

5 历史编辑

根特大学(比利时)的马克·范·蒙塔古和约瑟夫·舍尔发现了农杆菌和植物之间的基因转移机制,这促进了利用农杆菌转化作为植物基因工程的有效传递系统的方法的发展。[19][19] 玛丽-戴尔·奇尔顿博士领导的一个研究小组首次证明,农杆菌毒性基因可以被去除,而不会影响农杆菌将自身基因插入植物基因组的能力 (1983年)。

参考文献

  • [1]

    ^Uchino Y, Yokota A, Sugiyama J (August 1997). "Phylogenetic position of the marine subdivision of Agrobacterium species based on 16S rRNA sequence analysis". The Journal of General and Applied Microbiology. 43 (4): 243–247. doi:10.2323/jgam.43.243. PMID 12501326..

  • [2]

    ^Uchino Y, Hirata A, Yokota A, Sugiyama J (June 1998). "Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev". The Journal of General and Applied Microbiology. 44 (3): 201–210. doi:10.2323/jgam.44.201. PMID 12501429..

  • [3]

    ^Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (January 2001). "A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis". International Journal of Systematic and Evolutionary Microbiology. 51 (Pt 1): 89–103. doi:10.1099/00207713-51-1-89. PMID 11211278.[永久失效连结].

  • [4]

    ^Farrand SK, Van Berkum PB, Oger P (September 2003). "Agrobacterium is a definable genus of the family Rhizobiaceae". International Journal of Systematic and Evolutionary Microbiology. 53 (Pt 5): 1681–7. doi:10.1099/ijs.0.02445-0. PMID 13130068..

  • [5]

    ^Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (September 2003). "Classification and nomenclature of Agrobacterium and Rhizobium". International Journal of Systematic and Evolutionary Microbiology. 53 (Pt 5): 1689–95. doi:10.1099/ijs.0.02762-0. PMID 13130069..

  • [6]

    ^Sawada H, Ieki H, Oyaizu H, Matsumoto S (October 1993). "Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes". International Journal of Systematic Bacteriology. 43 (4): 694–702. doi:10.1099/00207713-43-4-694. PMID 8240952..

  • [7]

    ^Francis KE, Spiker S (February 2005). "Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations". The Plant Journal. 41 (3): 464–77. doi:10.1111/j.1365-313X.2004.02312.x. PMID 15659104..

  • [8]

    ^Pitzschke A, Hirt H (March 2010). "New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation". The EMBO Journal. 29 (6): 1021–32. doi:10.1038/emboj.2010.8. PMC 2845280. PMID 20150897..

  • [9]

    ^Hulse M, Johnson S, Ferrieri P (January 1993). "Agrobacterium infections in humans: experience at one hospital and review". Clinical Infectious Diseases. 16 (1): 112–7. doi:10.1093/clinids/16.1.112. PMID 8448285..

  • [10]

    ^Dunne WM, Tillman J, Murray JC (September 1993). "Recovery of a strain of Agrobacterium radiobacter with a mucoid phenotype from an immunocompromised child with bacteremia". Journal of Clinical Microbiology. 31 (9): 2541–3. PMC 265809. PMID 8408587..

  • [11]

    ^Cain JR (March 1988). "A case of septicaemia caused by Agrobacterium radiobacter". The Journal of Infection. 16 (2): 205–6. doi:10.1016/s0163-4453(88)94272-7. PMID 3351321..

  • [12]

    ^Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (February 2001). "Genetic transformation of HeLa cells by Agrobacterium". Proceedings of the National Academy of Sciences of the United States of America. 98 (4): 1871–6. Bibcode:2001PNAS...98.1871K. doi:10.1073/pnas.041327598. JSTOR 3054968. PMC 29349. PMID 11172043..

  • [13]

    ^Thomson JA. "Genetic Engineering of Plants" (PDF). Biotechnology. 3. Retrieved 17 July 2016..

  • [14]

    ^Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (July 2013). "Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins". Journal of Visualized Experiments. 77 (77). doi:10.3791/50521. PMC 3846102. PMID 23913006..

  • [15]

    ^Shamloul M, Trusa J, Mett V, Yusibov V (April 2014). "Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana". Journal of Visualized Experiments (86). doi:10.3791/51204. PMC 4174718. PMID 24796351..

  • [16]

    ^Clough SJ, Bent AF (December 1998). "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana". The Plant Journal. 16 (6): 735–43. doi:10.1046/j.1365-313x.1998.00343.x. PMID 10069079..

  • [17]

    ^The FDA List of Completed Consultations on Bioengineered Foods Archived 5月 13, 2008 at the Wayback Machine.

  • [18]

    ^Setubal JC, Wood D, Burr T, Farrand SK, Goldman BS, Goodner B, Otten L, Slater S (2009). "The Genomics of Agrobacterium: Insights into its Pathogenicity, Biocontrol, and Evolution". In Jackson RW. Plant Pathogenic Bacteria: Genomics and Molecular Biology. Caister Academic Press. pp. 91–112. ISBN 978-1-904455-37-0..

  • [19]

    ^Schell J, Van Montagu M (1977). "The Ti-Plasmid of Agrobacterium Tumefaciens, A Natural Vector for the Introduction of NIF Genes in Plants?". In Hollaender A, Burris RH, Day PR, Hardy RW, Helinski DR, Lamborg MR, Owens L, Valentine RC. Genetic Engineering for Nitrogen Fixation. Basic Life Sciences. 9. pp. 159–79. doi:10.1007/978-1-4684-0880-5_12. ISBN 978-1-4684-0882-9. PMID 336023..

阅读 135
版本记录
  • 暂无