常见用途:
水凝胶的常见组成包括含大量亲水基团的聚乙烯醇、聚丙烯酸钠、丙烯酸酯类聚合物和共聚物。
由于含有大量水分,水凝胶还具有与天然组织非常相似的柔韧性。作为响应性的“智能材料”,水凝胶可以封装化学系统。当受到外部因素如酸碱度变化的刺激时,化学系统可以将特定化合物如葡萄糖释放到环境中。这一过程在大多数情况下是通过凝胶-溶胶转变实现的。机械化学聚合物大多也是水凝胶,一旦受到刺激,它们会改变体积,因此可用作驱动器或传感器。
播放媒体
图示为一种基于棒状水凝胶的微泵(尺寸:4×0.3×0.05 mm),由外加电压驱动。该泵可以使用1.5 V电池并连续运行至少6个月[12]
图示为一种基于短肽的水凝胶基质的场发射扫描电子显微镜图。该水凝胶能够保持自身重量一百倍的水,可用作创伤愈合敷料。这一水凝胶网络的纤维宽度约为几十纳米,可以模拟细胞外基质中常见的纤维微环境。
图示为与上图相同的短肽水凝胶。通过用镊子夹持以展示其刚度和透明度。
^Warren, David S.; Sutherland, Sam P. H.; Kao, Jacqueline Y.; Weal, Geoffrey R.; Mackay, Sean M. (2017-04-20). "The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel". Journal of Chemical Education (in 英语). 94 (11): 1772–1779. Bibcode:2017JChEd..94.1772W. doi:10.1021/acs.jchemed.6b00389. ISSN 0021-9584..
^"Der Hydrogel und das kristallinische Hydrat des Kupferoxydes". Zeitschrift für Chemie und Industrie der Kolloide. 1 (7): 213–214. 1907. doi:10.1007/BF01830147..
^"Ingested, transient, space occupying device for weight management and/or weight loss" (PDF). Retrieved 17 April 2019..
^Mellati, Amir; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Zhang, Hu (2014). "A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells". RSC Adv. 4 (109): 63951–63961. doi:10.1039/C4RA12215A. ISSN 2046-2069..
^Discher, D. E.; Janmey, P.; Wang, Y.L. (2005). "Tissue Cells Feel and Respond to the Stiffness of Their Substrate" (PDF). Science. 310 (5751): 1139–43. Bibcode:2005Sci...310.1139D. CiteSeerX 10.1.1.318.690. doi:10.1126/science.1116995. PMID 16293750..
^Brudno, Yevgeny (2015-12-10). "On-demand drug delivery from local depots". Journal of Controlled Release. 219: 8–17. doi:10.1016/j.jconrel.2015.09.011. PMID 26374941..
^Chemoresponsive Materials, Editor: Hans-Jörg Schneider, Royal Society of Chemistry, Cambridge 2015, https://pubs.rsc.org/en/content/ebook/978-1-78262-242-0.
^Yetisen, A. K.; Naydenova, I; Da Cruz Vasconcellos, F; Blyth, J; Lowe, C. R. (2014). "Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and their Applications". Chemical Reviews. 114 (20): 10654–96. doi:10.1021/cr500116a. PMID 25211200..
^Caló, Enrica; Khutoryanskiy, Vitaliy V. (2015). "Biomedical applications of hydrogels: A review of patents and commercial products". European Polymer Journal. 65: 252–267. doi:10.1016/j.eurpolymj.2014.11.024..
^Cook, Michael T.; Smith, Sarah L.; Khutoryanskiy, Vitaliy V. (2015). "Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing". Chem. Commun. 51 (77): 14447–14450. doi:10.1039/C5CC02428E. PMID 26221632..
^Cook, Michael T.; Khutoryanskiy, Vitaliy V. (2015). "Mucoadhesion and mucosa-mimetic materials—A mini-review". International Journal of Pharmaceutics. 495 (2): 991–8. doi:10.1016/j.ijpharm.2015.09.064. PMID 26440734..
^Kwon, Gu Han; Jeong, Gi Seok; Park, Joong Yull; Moon, Jin Hee; Lee, Sang-Hoon (2011). "A low-energy-consumption electroactive valveless hydrogel micropump for long-term biomedical applications". Lab on a Chip. 11 (17): 2910–5. doi:10.1039/C1LC20288J. PMID 21761057..
^Puoci, Francesco; et al. (2008). "Polymer in Agriculture: A Review" (PDF). American Journal of Agricultural and Biological Sciences. 3 (1): 299–314. doi:10.3844/ajabssp.2008.299.314..
暂无