The Wayback Machine - https://web.archive.org/web/20221109180718/https://baike.sogou.com/kexue/d10487.htm

肿瘤免疫学

编辑

肿瘤免疫学是生物学的一个跨学科分支,研究的是理解免疫系统在肿瘤进展和发展中的作用;最为著名的应用是癌症免疫疗法,它利用免疫系统作为肿瘤的治疗手段。肿瘤免疫监测和免疫编辑是基于预防肿瘤在动物系统中发展和人类肿瘤免疫识别靶标的鉴定。

1 定义编辑

肿瘤免疫学是生物学的一个跨学科分支,研究免疫系统在肿瘤发展中的作用;最为著名的应用是癌症免疫疗法,即免疫系统用于治疗肿瘤。[1][2] 肿瘤免疫监测是布尔内特(Burnet)和托马斯(Thomas)在1957年提出的一个理论,他们提出淋巴细胞在识别和消除不断出现的新生转化细胞中充当哨兵。[3][4] 肿瘤免疫监测似乎是一个重要的宿主保护过程,它通过抑制肿瘤发生和维持正常的细胞内环境平衡来降低肿瘤发生率。[5]也有人提出,免疫监测主要是作为肿瘤免疫编辑的一个更普遍过程的组成部分。[3]

2 肿瘤抗原编辑

肿瘤可表达被免疫系统识别的肿瘤抗原,并可诱导免疫反应。[6]这些肿瘤抗原要么是TSA(肿瘤特异性抗原),要么是TAA(肿瘤相关抗原)。[7]

肿瘤特异性抗原是仅出现在肿瘤细胞中的抗原。[7]TSAs可能是人乳头瘤病毒E6和E7蛋白等癌病毒的产物,发生在宫颈癌中,或EBV的EBNA-1蛋白,发生在Burkitt的淋巴细胞中。 [8][9] TTSA的另一个例子是突变的癌基因(如ras)和抑癌基因(如p53)的异常产物。 [10]

肿瘤相关抗原存在于健康细胞中,但由于某些原因,它们也存在于肿瘤细胞中。[7]然而,它们在表达的数量、地点或时间周期上有所不同。[11]癌胚抗原是由胚胎细胞和肿瘤表达的肿瘤相关抗原。[12]癌胚抗原的例子有由肝细胞癌产生的甲胎蛋白,或发生在卵巢癌和结肠癌中的癌胚抗原。[13][14] 更多的肿瘤相关抗原是HER2/neu、EGFR或MAGE-1。[15][16][17]

3 肿瘤免疫编辑编辑

肿瘤免疫编辑是免疫系统与肿瘤细胞相互作用的过程,它包括三个阶段:消除、平衡和逃逸,这些阶段通常被称为肿瘤免疫编辑的“三个Es”。适应性免疫系统和先天免疫系统都参与免疫编辑。[18]

在消除阶段,免疫反应导致肿瘤细胞的破坏,从而导致肿瘤抑制。然而,一些肿瘤细胞可能获得更多的突变,改变它们的特征并逃避免疫系统。这些细胞可能进入平衡阶段,在此阶段,免疫系统不能识别所有的肿瘤细胞,但同时肿瘤不会生长。这种情况可能导致逃逸期,在此期间肿瘤获得对免疫系统的支配,开始生长并建立免疫抑制环境。[19]

由于免疫编辑的结果,随着时间的推移,对免疫系统反应较弱的肿瘤细胞克隆在肿瘤中获得优势,同时被识别的细胞被消除这一过程可能被认为类似于达尔文进化论,在达尔文的进化论中,含有原癌基因或免疫抑制突变的细胞存活下来,将它们的突变传递给子细胞,子细胞本身可能发生突变并承受进一步的选择性压力,这导致肿瘤由免疫原性降低的细胞组成,并且很难消除。[19]这一现象被证明是癌症患者免疫疗法的结果。[20]

4 肿瘤逃避免疫反应的机制编辑

肿瘤细胞已经发展出各种机制来逃避免疫监视。

CD8+细胞毒性T细胞是抗肿瘤免疫的基础细胞。它们的TCR受体能识别由MHC I类呈递的抗原,当与之结合时,Tc细胞触发其细胞毒性活性。MHC I出现在所有有核细胞的表面,然而,一些癌细胞降低了MHC I的表达,并避免被细胞毒性T细胞检测到。[21]这可以通过MHCI基因突变,或通过降低对干扰素γ(影响MHCI的表面表达)的灵敏度来实现。[21][22] 另一方面,MHC I的完全丧失是自然杀伤细胞的触发因素。因此,肿瘤细胞保持MHC I [21]的低表达。逃避细胞毒性T细胞的另一种方法是停止表达细胞毒性T细胞共刺激所必需的分子,如CD80或CD86。[23][24]

肿瘤细胞通过在其表面表达FasL,可以通过FasL-Fas相互作用诱导T淋巴细胞凋亡。[25]

此外,肿瘤细胞可以通过接触依赖性或独立性刺激诱导调节性T细胞的产生。在一个健康的组织中,功能正常的调节性T细胞对维持自我耐受性至关重要。然而,在肿瘤中,调节性T细胞形成免疫增强的微环境。[26]

5 肿瘤免疫学和化学疗法编辑

奥贝德(Obeid)等人,[27]研究了如何诱导免疫原性癌细胞死亡,应该成为癌症化疗的重点。他推断,免疫系统将能够通过“旁观者效应”在根除化疗耐药的癌细胞中发挥作用。[28][29][30][2] 然而,关于免疫反应是如何被触发来对抗垂死的肿瘤细胞,仍需要广泛的研究。[2][31]

该领域的专业人员假设“凋亡细胞的死亡是免疫原性较差的,而坏死细胞的死亡是真正的免疫原性的”。[32][33][34] 这可能是因为癌症细胞通过坏死细胞死亡途径被消灭,而炎症反应刺激触发树突状细胞成熟,从而引发免疫反应。[35][36] 另一方面,细胞凋亡与质膜内的微小变化有关,使得死亡细胞对吞噬细胞有吸引力。[37]然而,许多基于动物的研究表明,与坏死细胞相比,用凋亡细胞接种疫苗在引发抗肿瘤免疫反应方面具有优势。[38][39][40][41][42]

因此奥贝德(Obeid)等人[27]提出,化疗期间癌细胞死亡的方式至关重要。蒽环类化疗药物形成一个有益的免疫原性环境。研究人员报告说,鼓励通过摄取这种药物和表达树突状细胞呈递的抗原来杀死癌细胞,产生T细胞免疫反应,从而使肿瘤缩小。因此,激活杀死肿瘤的T细胞对免疫治疗的成功至关重要。[2][43]

然而,患有免疫抑制的晚期癌症患者让研究人员陷入了如何激活t细胞的两难境地。宿主树突状细胞反应和摄取肿瘤抗原以呈现给CD4+和CD8+ T细胞的方式是治疗成功的关键。[2][44]

参考文献

  • [1]

    ^Miller JF, Sadelain M (April 2015). "The journey from discoveries in fundamental immunology to cancer immunotherapy". Cancer Cell. 27 (4): 439–49. doi:10.1016/j.ccell.2015.03.007. PMID 25858803..

  • [2]

    ^Syn NL, Teng MW, Mok TS, Soo RA (December 2017). "De-novo and acquired resistance to immune checkpoint targeting". The Lancet. Oncology. 18 (12): e731–e741. doi:10.1016/s1470-2045(17)30607-1. PMID 29208439..

  • [3]

    ^Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (November 2002). "Cancer immunoediting: from immunosurveillance to tumor escape". Nature Immunology. 3 (11): 991–8. doi:10.1038/ni1102-991. PMID 12407406..

  • [4]

    ^Burnet M (April 1957). "Cancer; a biological approach. I. The processes of control". British Medical Journal. 1 (5022): 779–86. doi:10.1136/bmj.1.3356.779. JSTOR 25382096. PMC 1973174. PMID 13404306..

  • [5]

    ^Kim R, Emi M, Tanabe K (May 2007). "Cancer immunoediting from immune surveillance to immune escape". Immunology. 121 (1): 1–14. doi:10.1111/j.1365-2567.2007.02587.x. PMC 2265921. PMID 17386080..

  • [6]

    ^Pandolfi F, Cianci R, Pagliari D, Casciano F, Bagalà C, Astone A, Landolfi R, Barone C (2011). "The immune response to tumors as a tool toward immunotherapy". Clinical & Developmental Immunology. 2011: 894704. doi:10.1155/2011/894704. PMC 3235449. PMID 22190975..

  • [7]

    ^Storkus WJ, Finn OJ, DeLeo A, Zarour HM (2003). "Categories of Tumor Antigens". Holland-Frei Cancer Medicine (6th ed.)..

  • [8]

    ^Ramos CA, Narala N, Vyas GM, Leen AM, Gerdemann U, Sturgis EM, Anderson ML, Savoldo B, Heslop HE, Brenner MK, Rooney CM (January 2013). "Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies". Journal of Immunotherapy. 36 (1): 66–76. doi:10.1097/CJI.0b013e318279652e. PMC 3521877. PMID 23211628..

  • [9]

    ^Kelly GL, Stylianou J, Rasaiyaah J, Wei W, Thomas W, Croom-Carter D, Kohler C, Spang R, Woodman C, Kellam P, Rickinson AB, Bell AI (March 2013). "Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature". Journal of Virology. 87 (5): 2882–94. doi:10.1128/JVI.03003-12. PMC 3571367. PMID 23269792..

  • [10]

    ^Disis ML, Cheever MA (October 1996). "Oncogenic proteins as tumor antigens". Current Opinion in Immunology. 8 (5): 637–42. PMID 8902388..

  • [11]

    ^Finn OJ (May 2017). "Human Tumor Antigens Yesterday, Today, and Tomorrow". Cancer Immunology Research. 5 (5): 347–354. doi:10.1158/2326-6066.CIR-17-0112. PMC 5490447. PMID 28465452..

  • [12]

    ^Orell SR, Dowling KD (November 1983). "Oncofetal antigens as tumor markers in the cytologic diagnosis of effusions". Acta Cytologica. 27 (6): 625–9. PMID 6196931..

  • [13]

    ^Hsieh MY, Lu SN, Wang LY, Liu TY, Su WP, Lin ZY, Chuang WL, Chen SC, Chang WY (November 1992). "Alpha-fetoprotein in patients with hepatocellular carcinoma after transcatheter arterial embolization". Journal of Gastroenterology and Hepatology. 7 (6): 614–7. PMID 1283085..

  • [14]

    ^Khoo SK, MacKay EV (October 1976). "Carcinoembryonic antigen (CEA) in ovarian cancer: factors influencing its incidence and changes which occur in response to cytotoxic drugs". British Journal of Obstetrics and Gynaecology. 83 (10): 753–9. PMID 990213..

  • [15]

    ^Wang B, Zaidi N, He LZ, Zhang L, Kuroiwa JM, Keler T, Steinman RM (March 2012). "Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice". Breast Cancer Research. 14 (2): R39. doi:10.1186/bcr3135. PMC 3446373. PMID 22397502..

  • [16]

    ^Li G, Wong AJ (September 2008). "EGF receptor variant III as a target antigen for tumor immunotherapy". Expert Review of Vaccines. 7 (7): 977–85. doi:10.1586/14760584.7.7.977. PMID 18767947..

  • [17]

    ^Weon JL, Potts PR (December 2015). "The MAGE protein family and cancer". Current Opinion in Cell Biology. 37: 1–8. doi:10.1016/j.ceb.2015.08.002. PMC 4688208. PMID 26342994..

  • [18]

    ^Dunn GP, Old LJ, Schreiber RD (2004-03-19). "The three Es of cancer immunoediting". Annual Review of Immunology. 22 (1): 329–60. doi:10.1146/annurev.immunol.22.012703.104803. PMID 15032581..

  • [19]

    ^Mittal D, Gubin MM, Schreiber RD, Smyth MJ (April 2014). "New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape". Current Opinion in Immunology. 27: 16–25. doi:10.1016/j.coi.2014.01.004. PMC 4388310. PMID 24531241..

  • [20]

    ^von Boehmer L, Mattle M, Bode P, Landshammer A, Schäfer C, Nuber N, Ritter G, Old L, Moch H, Schäfer N, Jäger E, Knuth A, van den Broek M (2013-07-15). "NY-ESO-1-specific immunological pressure and escape in a patient with metastatic melanoma". Cancer Immunity. 13: 12. PMC 3718732. PMID 23882157..

  • [21]

    ^Daniyan AF, Brentjens RJ (June 2017). "Immunotherapy: Hiding in plain sight: immune escape in the era of targeted T-cell-based immunotherapies". Nature Reviews. Clinical Oncology. 14 (6): 333–334. doi:10.1038/nrclinonc.2017.49. PMC 5536112. PMID 28397826..

  • [22]

    ^Mojic M, Takeda K, Hayakawa Y (December 2017). "The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion". International Journal of Molecular Sciences. 19 (1): 89. doi:10.3390/ijms19010089. PMC 5796039. PMID 29283429..

  • [23]

    ^Tirapu I, Huarte E, Guiducci C, Arina A, Zaratiegui M, Murillo O, Gonzalez A, Berasain C, Berraondo P, Fortes P, Prieto J, Colombo MP, Chen L, Melero I (February 2006). "Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma". Cancer Research. 66 (4): 2442–50. doi:10.1158/0008-5472.CAN-05-1681. PMID 16489051..

  • [24]

    ^Pettit SJ, Ali S, O'Flaherty E, Griffiths TR, Neal DE, Kirby JA (April 1999). "Bladder cancer immunogenicity: expression of CD80 and CD86 is insufficient to allow primary CD4+ T cell activation in vitro". Clinical and Experimental Immunology. 116 (1): 48–56. doi:10.1046/j.1365-2249.1999.00857.x. PMC 1905215. PMID 10209504..

  • [25]

    ^Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P (April 2015). "The role of CD95 and CD95 ligand in cancer". Cell Death and Differentiation. 22 (4): 549–59. doi:10.1038/cdd.2015.3. PMC 4356349. PMID 25656654..

  • [26]

    ^Ha TY (December 2009). "The role of regulatory T cells in cancer". Immune Network (in English). 9 (6): 209–35. doi:10.4110/in.2009.9.6.209. PMC 2816955. PMID 20157609.CS1 maint: Unrecognized language (link).

  • [27]

    ^Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (Jan 2007). "Calreticulin exposure dictates the immunogenicity of cancer cell death". Nature Medicine. 13 (1): 54–61. doi:10.1038/nm1523. PMID 17187072..

  • [28]

    ^Steinman RM, Mellman I (Jul 2004). "Immunotherapy: bewitched, bothered, and bewildered no more". Science. 305 (5681): 197–200. doi:10.1126/science.1099688. PMID 15247468..

  • [29]

    ^Lake RA, van der Most RG (Jun 2006). "A better way for a cancer cell to die". The New England Journal of Medicine. 354 (23): 2503–4. doi:10.1056/NEJMcibr061443. PMID 16760453..

  • [30]

    ^Zitvogel L, Tesniere A, Kroemer G (Oct 2006). "Cancer despite immunosurveillance: immunoselection and immunosubversion". Nature Reviews. Immunology. 6 (10): 715–27. doi:10.1038/nri1936. PMID 16977338..

  • [31]

    ^Zitvogel L, Casares N, Péquignot MO, Chaput N, Albert ML, Kroemer G (2004). Immune response against dying tumor cells. Advances in Immunology. 84. pp. 131–79. doi:10.1016/S0065-2776(04)84004-5. ISBN 978-0-12-022484-5. PMID 15246252..

  • [32]

    ^Bellamy CO, Malcomson RD, Harrison DJ, Wyllie AH (Feb 1995). "Cell death in health and disease: the biology and regulation of apoptosis". Seminars in Cancer Biology. 6 (1): 3–16. doi:10.1006/scbi.1995.0002. PMID 7548839..

  • [33]

    ^Thompson CB (Mar 1995). "Apoptosis in the pathogenesis and treatment of disease". Science. 267 (5203): 1456–62. doi:10.1126/science.7878464. PMID 7878464..

  • [34]

    ^Igney FH, Krammer PH (Apr 2002). "Death and anti-death: tumour resistance to apoptosis". Nature Reviews. Cancer. 2 (4): 277–88. doi:10.1038/nrc776. PMID 12001989..

  • [35]

    ^Steinman RM, Turley S, Mellman I, Inaba K (Feb 2000). "The induction of tolerance by dendritic cells that have captured apoptotic cells". The Journal of Experimental Medicine. 191 (3): 411–6. doi:10.1084/jem.191.3.411. PMC 2195815. PMID 10662786..

  • [36]

    ^Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM (Oct 2002). "Immune tolerance after delivery of dying cells to dendritic cells in situ". The Journal of Experimental Medicine. 196 (8): 1091–7. doi:10.1084/jem.20021215. PMC 2194037. PMID 12391020..

  • [37]

    ^Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G (Nov 2005). "Classification of cell death: recommendations of the Nomenclature Committee on Cell Death". Cell Death and Differentiation. 12 Suppl 2: 1463–7. doi:10.1038/sj.cdd.4401724. PMID 16247491..

  • [38]

    ^Buckwalter MR, Srivastava PK (2013). "Mechanism of dichotomy between CD8+ responses elicited by apoptotic and necrotic cells". Cancer Immunity. 13: 2. PMC 3559190. PMID 23390373..

  • [39]

    ^Gamrekelashvili J, Ormandy LA, Heimesaat MM, Kirschning CJ, Manns MP, Korangy F, Greten TF (Oct 2012). "Primary sterile necrotic cells fail to cross-prime CD8(+) T cells". Oncoimmunology. 1 (7): 1017–1026. doi:10.4161/onci.21098. PMC 3494616. PMID 23170250..

  • [40]

    ^Janssen E, Tabeta K, Barnes MJ, Rutschmann S, McBride S, Bahjat KS, Schoenberger SP, Theofilopoulos AN, Beutler B, Hoebe K (Jun 2006). "Efficient T cell activation via a Toll-Interleukin 1 Receptor-independent pathway". Immunity. 24 (6): 787–99. doi:10.1016/j.immuni.2006.03.024. PMID 16782034..

  • [41]

    ^Ronchetti A, Rovere P, Iezzi G, Galati G, Heltai S, Protti MP, Garancini MP, Manfredi AA, Rugarli C, Bellone M (Jul 1999). "Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines". Journal of Immunology. 163 (1): 130–6. PMID 10384108..

  • [42]

    ^Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF (Jan 2003). "Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo". International Journal of Cancer. 103 (2): 205–11. doi:10.1002/ijc.10777. PMID 12455034..

  • [43]

    ^Storkus WJ, Falo LD (Jan 2007). "A 'good death' for tumor immunology". Nature Medicine. 13 (1): 28–30. doi:10.1038/nm0107-28. PMID 17206130..

  • [44]

    ^Dunn GP, Koebel CM, Schreiber RD (Nov 2006). "Interferons, immunity and cancer immunoediting". Nature Reviews. Immunology. 6 (11): 836–48. doi:10.1038/nri1961. PMID 17063185..

阅读 249
版本记录
  • 暂无