传感器融合是将感觉数据或来自不同来源的数据组合在一起,以此得到的信息相比于单独使用某一来源的数据具有更小的不确定性。在这种情况下,术语“不确定性降低” 意味着更精确、更完整、更可靠,或指产生了新的内容,例如立体视觉(通过组合两个视点略有不同的相机二维图像来计算深度信息)。[1][2]
融合过程的数据源不一定要来自相同类型的传感器。人们可以区分直接融合,间接融合,以及二者的进一步组合。直接融合是融合来自一组异质\同质( homogeneous )传感器、软传感器和传感器数据历史值的传感器数据,而间接融合使用信息源,如环境信息或人为输入的先验 知识。
传感器融合也称为 (多传感器)数据融合 ,是信息融合 的子集。
传感器融合这一术语涵盖多种算法,包括:
传感器融合计算的两个示例如下所示。
和 表示两个具有噪声的传感器测量值, 和 分别为噪声的方差。获取组合测量值 的一种方法是中心极限定理,其也应用于弗雷泽-波特(Fraser-Potter)固定区间光滑器中, 即[3][4]
,
其中 是组合估计的方差。可以看出,融合结果仅仅是两个测量值的线性组合,这两个测量值根据它们各自的噪声方差进行加权。
融合两个测量值的另一种方法是使用最优卡尔曼滤波器。假设数据由一阶系统生成, 表示滤波器的里卡蒂方程的解。通过在增益计算中应用克莱姆法则,滤波器增益由下式给出: [4]
根据上式可知,当第一个测量值无噪声时,滤波器忽略第二个测量值,反之亦然。也就是说,组合估计值根据测量质量进行加权。
在传感器融合中,中心式与分布式指的是数据融合处理的位置。在中心式融合中,客户机只需将所有数据转发到中心位置,中心位置的某个实体负责关联和融合数据。在分布式的情况下,客户机承担融合数据的全部责任。“在这种情况下,每个传感器或平台都可视为具有一定决策自主性的智能体。”[5]
中心式和分布式系统具有多种组合。
传感器配置的另一种分类依据传感器之间信息流的调配机制。[6][7]这些机制提供了解决冲突或分歧的方法,并支持动态感测策略的开发。如果每个节点都提供相同属性的独立度量,则传感器处于冗余(或竞争)配置。其可通过比较来自多个节点的信息进行纠错。冗余策略经常与高级融合一起应用于表决过程之中[8][9]。当多个信息源提供相同特征的不同信息时,就称为互补配置。该策略用于在决策算法中融合原始数据级别的信息。互补特征通常应用于神经网络的运动识别任务[10][11]、隐马尔可夫模型[12][13]、支持向量机 [14]、聚类方法和其他技术之中[14][13]。协同式传感器融合使用多个独立传感器提取的信息来提供单个传感器无法提供的信息。例如,安装与于身体部位的不同传感器可以检测它们之间的角度。协同式传感器配置中,信息无法从单个节点获得。协同式信息融合可用于运动识别[15],步态分析,运动分析[16][17][18]。
常用的传感器融合有几个类别或级别。[19][20][21][22][23][24]
传感器融合等级也可以基于用于提供融合算法的信息种类来定义[25]。更准确地说,传感器融合可以融合来自不同来源的原始数据、推断特征甚至单个节点做出的决策。
^Elmenreich, W. (2002). Sensor Fusion in Time-Triggered Systems, PhD Thesis (PDF). Vienna, Austria: Vienna University of Technology. p. 173..
^Haghighat, Mohammad Bagher Akbari; Aghagolzadeh, Ali; Seyedarabi, Hadi (2011). "Multi-focus image fusion for visual sensor networks in DCT domain". Computers & Electrical Engineering. 37 (5): 789–797. doi:10.1016/j.compeleceng.2011.04.016..
^Maybeck, S. (1982). Stochastic Models, Estimating, and Control. River Edge, NJ: Academic Press..
^Einicke, G.A. (2012). Smoothing, Filtering and Prediction: Estimating the Past, Present and Future. Rijeka, Croatia: Intech. ISBN 978-953-307-752-9..
^N. Xiong; P. Svensson (2002). "Multi-sensor management for information fusion: issues and approaches". Information Fusion. p. 3(2):163–186..
^Durrant-Whyte, Hugh F. (2016). "Sensor Models and Multisensor Integration". The International Journal of Robotics Research. 7 (6): 97–113. doi:10.1177/027836498800700608. ISSN 0278-3649..
^Galar, Diego; Kumar, Uday (2017). eMaintenance: Essential Electronic Tools for Efficiency. Academic Press. p. 26. ISBN 9780128111543..
^Li, Wenfeng; Bao, Junrong; Fu, Xiuwen; Fortino, Giancarlo; Galzarano, Stefano (2012). "Human Postures Recognition Based on D-S Evidence Theory and Multi-sensor Data Fusion": 912–917. doi:10.1109/CCGrid.2012.144..
^Fortino, Giancarlo; Gravina, Raffaele (2015). "Fall-MobileGuard: a Smart Real-Time Fall Detection System". doi:10.4108/eai.28-9-2015.2261462..
^Tao, Shuai; Zhang, Xiaowei; Cai, Huaying; Lv, Zeping; Hu, Caiyou; Xie, Haiqun (2018). "Gait based biometric personal authentication by using MEMS inertial sensors". Journal of Ambient Intelligence and Humanized Computing. 9 (5): 1705–1712. doi:10.1007/s12652-018-0880-6. ISSN 1868-5137..
^Dehzangi, Omid; Taherisadr, Mojtaba; ChangalVala, Raghvendar (2017). "IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion". Sensors. 17 (12): 2735. doi:10.3390/s17122735. ISSN 1424-8220..
^Guenterberg, E.; Yang, A.Y.; Ghasemzadeh, H.; Jafari, R.; Bajcsy, R.; Sastry, S.S. (2009). "A Method for Extracting Temporal Parameters Based on Hidden Markov Models in Body Sensor Networks With Inertial Sensors". IEEE Transactions on Information Technology in Biomedicine. 13 (6): 1019–1030. doi:10.1109/TITB.2009.2028421. ISSN 1089-7771..
^Parisi, Federico; Ferrari, Gianluigi; Giuberti, Matteo; Contin, Laura; Cimolin, Veronica; Azzaro, Corrado; Albani, Giovanni; Mauro, Alessandro (2016). "Inertial BSN-Based Characterization and Automatic UPDRS Evaluation of the Gait Task of Parkinsonians". IEEE Transactions on Affective Computing. 7 (3): 258–271. doi:10.1109/TAFFC.2016.2549533. ISSN 1949-3045..
^Gao, Lei; Bourke, A.K.; Nelson, John (2014). "Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems". Medical Engineering & Physics. 36 (6): 779–785. doi:10.1016/j.medengphy.2014.02.012. ISSN 1350-4533..
^Xu, James Y.; Wang, Yan; Barrett, Mick; Dobkin, Bruce; Pottie, Greg J.; Kaiser, William J. (2016). "Personalized Multilayer Daily Life Profiling Through Context Enabled Activity Classification and Motion Reconstruction: An Integrated System Approach". IEEE Journal of Biomedical and Health Informatics. 20 (1): 177–188. doi:10.1109/JBHI.2014.2385694. ISSN 2168-2194..
^Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona (2015). "A Novel Adaptive, Real-Time Algorithm to Detect Gait Events From Wearable Sensors". IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23 (3): 413–422. doi:10.1109/TNSRE.2014.2337914. ISSN 1534-4320..
^Wang, Zhelong; Qiu, Sen; Cao, Zhongkai; Jiang, Ming (2013). "Quantitative assessment of dual gait analysis based on inertial sensors with body sensor network". Sensor Review. 33 (1): 48–56. doi:10.1108/02602281311294342. ISSN 0260-2288..
^Kong, Weisheng; Wanning, Lauren; Sessa, Salvatore; Zecca, Massimiliano; Magistro, Daniele; Takeuchi, Hikaru; Kawashima, Ryuta; Takanishi, Atsuo (2017). "Step Sequence and Direction Detection of Four Square Step Test". IEEE Robotics and Automation Letters. 2 (4): 2194–2200. doi:10.1109/LRA.2017.2723929. ISSN 2377-3766..
^Rethinking JDL Data Fusion Levels.
^Blasch, E., Plano, S. (2003) “Level 5: User Refinement to aid the Fusion Process”, Proceedings of the SPIE, Vol. 5099..
^J. Llinas; C. Bowman; G. Rogova; A. Steinberg; E. Waltz; F. White (2004). Revisiting the JDL data fusion model II. International Conference on Information Fusion. CiteSeerX 10.1.1.58.2996..
^Blasch, E. (2006) "Sensor, user, mission (SUM) resource management and their interaction with level 2/3 fusion[永久失效连结]" International Conference on Information Fusion..
^https://web.archive.org/web/20221028222054/http://defensesystems.com/articles/2009/09/02/c4isr1-sensor-fusion.aspx.
^Blasch, E., Steinberg, A., Das, S., Llinas, J., Chong, C.-Y., Kessler, O., Waltz, E., White, F. (2013) "Revisiting the JDL model for information Exploitation," International Conference on Information Fusion..
^Gravina, Raffaele; Alinia, Parastoo; Ghasemzadeh, Hassan; Fortino, Giancarlo (2017). "Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges". Information Fusion. 35: 68–80. doi:10.1016/j.inffus.2016.09.005. ISSN 1566-2535..
^Gao, Teng; Song, Jin-Yan; Zou, Ji-Yan; Ding, Jin-Hua; Wang, De-Quan; Jin, Ren-Cheng (2015). "An overview of performance trade-off mechanisms in routing protocol for green wireless sensor networks". Wireless Networks. 22 (1): 135–157. doi:10.1007/s11276-015-0960-x. ISSN 1022-0038..
^Chen, Chen; Jafari, Roozbeh; Kehtarnavaz, Nasser (2015). "A survey of depth and inertial sensor fusion for human action recognition". Multimedia Tools and Applications. 76 (3): 4405–4425. doi:10.1007/s11042-015-3177-1. ISSN 1380-7501..
^Banovic, Nikola; Buzali, Tofi; Chevalier, Fanny; Mankoff, Jennifer; Dey, Anind K. (2016). "Modeling and Understanding Human Routine Behavior": 248–260. doi:10.1145/2858036.2858557..
^Maria, Aileni Raluca; Sever, Pasca; Carlos, Valderrama (2015). "Biomedical sensors data fusion algorithm for enhancing the efficiency of fault-tolerant systems in case of wearable electronics device": 1–4. doi:10.1109/ROLCG.2015.7367228..
^Bahrepour, Majid; Meratnia, Nirvana; Taghikhaki, Zahra; M. Having, Paul J. (2011). "Sensor Fusion-Based Activity Recognition for Parkinson Patients". doi:10.5772/16646..
^Gross, Jason; Yu Gu; Matthew Rhudy; Srikanth Gururajan; Marcello Napolitano (July 2012). "Flight Test Evaluation of Sensor Fusion Algorithms for Attitude Estimation". IEEE Transactions on Aerospace and Electronic Systems. 48 (3): 2128–2139. doi:10.1109/TAES.2012.6237583..
^Joshi, V., Rajamani, N., Takayuki, K., Prathapaneni, N., Subramaniam, L. V., (2013). Information Fusion Based Learning for Frugal Traffic State Sensing. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.CS1 maint: Multiple names: authors list (link).
^Ran, Lingyan; Zhang, Yanning; Wei, Wei; Zhang, Qilin (2017-10-23). "A Hyperspectral Image Classification Framework with Spatial Pixel Pair Features". Sensors. 17 (10): 2421. doi:10.3390/s17102421..
暂无