The Wayback Machine - https://web.archive.org/web/20221025085117/https://baike.sogou.com/kexue/d10330.htm

肌酸

编辑

肌酸[1] 是一种化学式为(H₂N)(HN)CN(CH₃)CH₂CO₂H的有机化合物。该物质在溶液中以多种形式(互变异构体)存在。肌酸发现于脊椎动物中,它促进三磷酸腺苷(ATP)循环,三磷酸腺苷是细胞的能量“货币”,主要分布在肌肉和脑组织中。肌酸在该循环中的作用是通过贡献磷酸基团把二磷酸腺苷(ADP)转化为三磷酸腺苷(ATP)。肌酸也起缓冲剂的作用。[2]

1 历史编辑

肌酸最早是在1832年被发现的,当时Michel Eugène Chevreul从骨骼肌的碱性水提取物中分离出肌酸。后来,他用希腊单词“肉”κρέας (kreas)命名该结晶沉淀物。1928年科学家发现,肌酸与肌酐处于平衡共存状态。[1] 20世纪20年代的研究发现,大量摄入肌酸不会导致肌酸的排泄。这表明人体有储存肌酸的能力,这反过来又表明肌酸可以作为一种膳食补充剂。[2]

1912年,哈佛大学研究员Otto Folin和Willey Glover Denis发现,摄入肌酸可以显著提高肌肉的肌酸含量。[3]20世纪20年代末,在发现摄入比正常量更多的肌酸可以增加肌内肌酸的储存之后,科学家们又发现了磷酸肌酸,并确认肌酸在骨骼肌的新陈代谢中发挥着关键作用。肌酸是脊椎动物自然形成的。[4]

磷酸肌酸[5][6] 的发现报道于1927年。[7][8][6] 20世纪60年代,肌酸磷酸激酶(CK)被证明可以利用磷酸肌酸(PCr)磷酸化二磷酸腺苷(ADP)以生成三磷酸腺苷(ATP)。人们还发现,肌肉收缩时直接消耗的是三磷酸腺苷(ATP)而不是膦酸肌酸(PCr)。肌酸磷酸激酶(CK)使用肌酸来缓冲三磷酸腺苷/二磷酸腺苷。[9]

虽然肌酸对机体的影响从二十世纪初就已经有了很多记载,但是在1992年巴塞罗那奥运会之后,肌酸才开始进入公众视野。《泰晤士报》1992年8月7日的一篇文章报道说,100米金牌得主Linford Christie在奥运会前使用了肌酸。《健美月刊》上的一篇文章称400米栏金牌得主Sally Gunnell为肌酸使用者。此外,《泰晤士报》还指出,100米跨栏运动员Colin Jackson在奥运会前就开始服用肌酸。[10][11]

磷酸肌酸将磷酸盐传递给ADP。

当时,低效力肌酸补充剂在英国是可以买到的,但是设计用于增强力量的肌酸补充剂直到1993年才上市,当时一家叫做实验和应用科学(EAS)的公司将这种化合物以磷腈的名字引入运动营养市场。[12] 此后进行的研究表明,高血糖碳水化合物与肌酸一起摄入会增加肌肉的肌酸储备。[13]

肌酸酐的环状衍生物与其互变异构体和肌酸处于平衡状态。

1.1 生物合成

肌酸合成主要发生在肝脏和肾脏。[14][15] 平均而言,年轻成人体内大约以每天约8.3毫摩尔或1克的速率合成肌酸。[15][16] 从杂食性饮食中每天也可以摄入约1克的肌酸。[15][17] 人体中绝大部分的肌酸和磷酸肌酸储存在骨骼肌中,其余的分布在血液、大脑和其他组织中。[16][17]

因为肌酸是由人体中甘氨酸和精氨酸反应,由蛋氨酸催化胍基乙酸转化生成的,所以它不是一种必需的营养物质[18]。在生物合成的第一步中,这两个氨基酸通过精氨酸:甘氨酸脒基转移酶结合 (AGAT, EC:2.1.4.1)形成胍基乙酸,然后使用S-腺苷甲硫氨酸作为甲基供体,用胍基乙酸N-甲基转移酶将其甲基化(GAMT, EC:2.1.1.2)。肌酸本身可以被肌酸磷酸激酶磷酸化,形成磷酸肌酸,磷酸肌酸可被用作骨骼肌和大脑的能量缓冲剂。

肌酸的合成主要发生在肾脏和肝脏,然后通过血液输送到肌肉。人体肌酸和磷酸肌酸大部分储存于骨骼肌中,其余的分布在血液、大脑和其他组织中。[16][17][19] 通常,年轻成年人内源性合成肌酸的速率约为每天8.3毫摩尔或1克。[15][16] 从杂食性饮食中每天也可以摄入约1克的肌酸。[16][17]一些小型研究表明,素食者的肌肉肌酸总量明显低于非素食者,因为动物源性食物是肌酸的主要来源,这是意料之中的。然而,在使用补充剂后,受试者表现出了相同的水平。[20]

1.2 磷酸肌酸系统

肌酸在肝脏和肾脏中合成,通过血液运输,并通过活跃的转运系统,被高能量需求的组织(如大脑和骨骼肌等)所吸收。骨骼肌中三磷酸腺苷的浓度通常为2-5mM,这将导致肌肉收缩只有几秒钟。[21] 在能量需求增加的时候,磷酸原(或三磷酸腺苷/磷酸肌酸)系统通过与肌酸磷酸激酶(CK)的可逆反应,利用磷酸肌酸(聚合酶链反应)从二磷酸腺苷(ADP)中快速再合成三磷酸腺苷(ATP)。在骨骼肌中,磷酸肌酸浓度可能达到20–35mM或更高。此外,在大多数肌肉中,肌酸磷酸激酶再生三磷酸腺苷的能力非常强,因此不是一个限制因素。虽然细胞内三磷酸腺苷(ATP)的浓度很小,但由于磷酸肌酸储量巨大,在肌酸磷酸激酶的作用下,三磷酸腺苷(ATP)持续高效的得以补充,因而很难检测到量的变化。[21] 肌酸能够增加肌肉对磷酸肌酸的储存,潜在地增加肌肉从二磷酸腺苷(ADP)重新合成三磷酸腺苷(ATP)以满足增加的能量需求的能力。[22][23][24]

2 遗传缺陷编辑

肌酸生物合成途径中的遗传缺陷导致各种严重的神经缺陷。[25] 临床上,有三种不同的肌酸代谢紊乱。两种合成酶的缺陷可导致L-精氨酸:甘氨酸脒基转移酶缺陷(由GATM变异体引起)和胍基乙酸甲基转移酶缺陷(由GAMT变异体引起)。两种生物合成缺陷都是以常染色体隐性方式遗传的。第三种缺陷,肌酸转运蛋白缺陷,是由SLC6A8的突变引起的,并以一种X连锁的方式遗传。这种情况与肌酸向大脑的转运有关。[26]

3 肌酸补充剂的健康影响编辑

3.1 使用

肌酸的使用可以将高强度无氧重复劳动(工作和休息时间)的最大功率和表现提高5-15%。[27][28][29] 尽管肌酸能在短时间的高强度有氧运动中增加力量,但它对有氧运动的耐力没有显著影响。[30][31]

一项对21000名大学生运动员的调查显示,14%的运动员服用肌酸补充剂来提高成绩。[32] 报告表明有非运动员服用肌酸补充剂来改善形体。[32]

据报道,肌酸能提高认知能力,[33] 尤其是在饮食摄入不足的个体中, [34][35] 有研究称肌酸是一种益智补充剂。

营养补充剂

一水合肌酸适用于素食者和纯素食者,因为生产这种补充剂的原料没有动物来源。

3.2 治疗用途

根据一项针对各种肌肉营养不良患者的临床研究,使用纯的肌酸一水合物有助于受伤和肢体固定后的康复。[36]

3.3 医疗用途

一项临床研究表明,单独摄入高质量肌酸或与运动相结合,可通过提高无脂体重、肌肉力量和耐力,同时改善骨密度,以减少和延缓与年龄相关的肌肉萎缩。[37]

3.4 负面影响

副作用包括:[38][39]

  • 额外的肌肉水分滞留导致体重增加
  • 潜在的肌肉痉挛/拉伤/拉伤风险
  • 胃部不适
  • 腹泻
  • 晕眩
  • 额外水分消耗导致的高血压

健康成人正常剂量使用肌酸不会损害肾脏;截至2012年,其对老年人和青少年肾脏的影响尚不清楚。[40] 美国儿科学会和美国运动医学学院都建议18岁以下的人不要使用肌酸。[41][42]

患有肾脏疾病、高血压或肝病的人不应将肌酸作为膳食补充剂。[43]

一项关于肌酸补充效果的详尽记录表明,补充肌酸的第一周里体重会增加,这可能是由于肌肉肌酸浓度增加导致更多的水分滞留在肌肉里。[44]

2009年的一项系统性综述对补充肌酸可能影响水合状态和耐热性、导致肌肉痉挛和腹泻提出了质疑。[45][46]

3.5 相互作用

肌酸与可能损害肾脏的药物一起服用会增加肾脏损伤的风险:[43]

  • 非甾体抗炎药(NSAIDs)——比如布洛芬(美林,雅维)和萘普生(阿列夫)
  • 利尿剂(水丸)——例如呋塞米(速尿)
  • 西咪替丁(泰胃美)
  • 丙磺舒

美国国立卫生研究院的一项研究表明,咖啡因与肌酸的相互作用会加速帕金森病的进展。[47]

3.6 污染

2011年对意大利33种市售补品的调查发现,其中超过50%的补品在至少一种污染物方面超过了欧洲食品安全管理局的建议。这些污染物中最普遍的是肌酸酐——也是人体分解肌酸的产物。[48] 在44%的样本中,肌酸酐的浓度高于欧洲食品安全管理局的建议。约15%的样品具有可检测的二氢-1,3,5-三嗪水平或高双氰胺浓度。重金属污染问题不令人担心,只检测到少量的汞。2007年审查的两项研究没有发现有关问题。[42]

3.7 食品安全

当肌酸在高温(高于148℃)下与蛋白质和糖混合时,反应会生成致癌的杂环胺。[49] 这种反应发生在烤肉或煎肉的时候。[50] 肌酸含量(占粗蛋白的百分比)可以作为肉类质量的指标。[51]

4 化学编辑

肌酸是胍基阳离子的衍生物。肌酸的一种环状形式,称为肌酸酐,与其互变异构体和肌酸平衡存在。肌酸通过肌酸磷酸激酶的作用进行磷酸化,产生磷酸肌酸。磷酸基团附着在肌酸的NH中心。磷氮键是高度反应活性的。

肌酸补充剂以乙酯、葡萄糖酸盐、一水合物和硝酸盐的形式销售。[40]

5 药代动力学编辑

此图显示摄入4.4克肌酸的肌酸一水合物(CRM)、柠檬酸三肌酸(CRC)或肌酸丙酮酸(CRPYR)后8小时内的平均血浆肌酸浓度(以μmol/L测量)。[1]

健康成人的内源性血清或血浆肌酸浓度通常在2-12毫克/升的范围内。健康成人单次口服5克(5000毫克)后,摄入后1-2小时血浆肌酸浓度峰值约为120毫克/升。肌酸的消除半衰期相当短,平均不到3小时,因此为了维持较高的肌酸浓度水平,有必要每天每3-6小时服用一次小剂量的口服肌酸。在“负荷剂量”期(1-2周,每天12-24克)后,不再需要保持血清肌酸的持续高水平。和大多数补充剂一样,每个人都有自己基因“预设”的肌酸含量。其余的作为废物被消除。典型的负荷后剂量是每天2-5g。[52][53][54]

补充肌酸似乎增加了卫星细胞“贡献”给受损肌肉纤维的肌核数量,从而增加了这些纤维生长的潜力。肌核的增加可能源于肌酸增加肌源性转录因子MRF4水平的能力。[55]

6 研究编辑

6.1 ALS

肌酸作为药物对肌萎缩性侧索硬化的治疗无效。[56]

6.2 肌肉疾病

一项荟萃分析发现,肌酸治疗可增强肌营养不良患者的肌肉力量,并可能改善其功能表现。[57] 肌酸治疗对代谢性肌病患者的肌肉力量没有明显改善。[57]当患有麦卡德尔病的人服用高剂量的肌酸时,会导致肌肉疼痛加剧和日常生活活动能力受损。[57]

6.3 帕金森病

肌酸对线粒体功能的影响使得人们开始研究它减缓帕金森病的有效性和安全性。截至2014年,由于存在偏倚风险、样本量小和试验周期时间短,这些证据并没有为治疗决策提供可靠的依据。[58]

参考文献

  • [1]

    ^Cannan RK, Shore A (1928). "The creatine-creatinine equilibrium. The apparent dissociation constants of creatine and creatinine" (PDF). The Biochemical Journal. 22 (4): 920–9. doi:10.1042/bj0220920. PMC 1252207. PMID 16744118..

  • [2]

    ^Jeff S. Volek,Kevin D. Ballard, Cassandra E. Forsythe (2008). "Overview of Creatine Metabolism". In Jeffrey R. Stout, Jose Antonio, Douglas Kalman. Essentials of Creatine in Sports and Health. Humana. pp. 1–23. ISBN 978-1-59745-573-2.CS1 maint: Uses authors parameter (link) CS1 maint: Uses editors parameter (link).

  • [3]

    ^Folin O, Denis W (1912). "Protein metabolism from the standpoint of blood and tissue analysis". Journal of Biological Chemistry. 12 (1): 141–61..

  • [4]

    ^Brosnan J, da Silva R, Brosnan M (2011). "The metabolic burden of creatine synthesis". Amino Acids. 40 (5): 1325–13351. doi:10.1007/s00726-011-0853-y. PMID 21387089..

  • [5]

    ^Saks, Valdur (2007). Molecular system bioenergetics: energy for life. Weinheim: Wiley-VCH. p. 2. ISBN 978-3-527-31787-5..

  • [6]

    ^Ochoa, Severo (1989). Sherman, E. J.; National Academy of Sciences, eds. David Nachmansohn. Biographical Memoirs. 58. National Academies Press. pp. 357–404. ISBN 978-0-309-03938-3..

  • [7]

    ^Eggleton, Philip; Eggleton, Grace Palmer (1927). "The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog". Biochemical Journal. 21 (1): 190–195. doi:10.1042/bj0210190. PMC 1251888. PMID 16743804..

  • [8]

    ^Fiske, Cyrus H.; Subbarao, Yellapragada (1927). "The nature of the 'inorganic phosphate' in voluntary muscle". Science. 65 (1686): 401–403. doi:10.1126/science.65.1686.401. PMID 17807679..

  • [9]

    ^Gajja S. Salomons, Markus Wyss, eds. (2007). "Introduction – Creatine: Cheap Ergogenic Supplement with Great Potential for Health and Disease". Creatine and Creatine Kinase in Health and Disease. Springer. pp. 1–16. ISBN 978-1-4020-6486-9.CS1 maint: Uses editors parameter (link).

  • [10]

    ^"Supplement muscles in on the market". National Review of Medicine. 2004-07-30. Archived from the original on 2006-11-16. Retrieved 2011-05-25..

  • [11]

    ^Passwater, Richard A. (2005). Creatine. p. 9. ISBN 978-0-87983-868-3. Retrieved 2011-05-25.[页码请求].

  • [12]

    ^Stoppani, Jim (May 2004). Creatine new and improved: recent high-tech advances have made creatine even more powerful. Here's how you can take full advantage of this super supplement. Muscle & Fitness. Retrieved 2010-03-29..

  • [13]

    ^Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL (November 1996). "Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans". The American Journal of Physiology. 271 (5 Pt 1): E821–6. doi:10.1152/ajpendo.1996.271.5.E821. PMID 8944667..

  • [14]

    ^Barcelos RP, Stefanello ST, Mauriz JL, Gonzalez-Gallego J, Soares FA (2016). "Creatine and the Liver: Metabolism and Possible Interactions". Mini Reviews in Medicinal Chemistry. 16 (1): 12–8. doi:10.2174/1389557515666150722102613. PMID 26202197. The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis..

  • [15]

    ^Brosnan JT, da Silva RP, Brosnan ME (May 2011). "The metabolic burden of creatine synthesis". Amino Acids. 40 (5): 1325–31. doi:10.1007/s00726-011-0853-y. PMID 21387089. Creatinine loss averages approximately 2 g (14.6 mmol) for 70 kg males in the 20- to 39-year age group. ... Table 1 Comparison of rates of creatine synthesis in young adults with dietary intakes of the three precursor amino acids and with the whole body transmethylation flux Creatine synthesis (mmol/day) 8.3.

  • [16]

    ^Cooper R, Naclerio F, Allgrove J, Jimenez A (July 2012). "Creatine supplementation with specific view to exercise/sports performance: an update". Journal of the International Society of Sports Nutrition. 9 (1): 33. doi:10.1186/1550-2783-9-33. PMC 3407788. PMID 22817979. Creatine is produced endogenously at an amount of about 1 g/d. Synthesis predominately occurs in the liver, kidneys, and to a lesser extent in the pancreas. The remainder of the creatine available to the body is obtained through the diet at about 1 g/d for an omnivorous diet. 95% of the bodies creatine stores are found in the skeletal muscle and the remaining 5% is distributed in the brain, liver, kidney, and testes [1]..

  • [17]

    ^Brosnan ME, Brosnan JT (August 2016). "The role of dietary creatine". Amino Acids. 48 (8): 1785–91. doi:10.1007/s00726-016-2188-1. PMID 26874700. The daily requirement of a 70-kg male for creatine is about 2 g; up to half of this may be obtained from a typical omnivorous diet, with the remainder being synthesized in the body ... More than 90% of the body’s creatine and phosphocreatine is present in muscle (Brosnan and Brosnan 2007), with some of the remainder being found in the brain (Braissant et al. 2011). ... Creatine synthesized in liver must be secreted into the bloodstream by an unknown mechanism (Da Silva et al. 2014a).

  • [18]

    ^"Creatine". Beth Israel Deaconess Medical Center. Retrieved 23 August 2010..

  • [19]

    ^"Creatine". MedLine Plus Supplements. U.S. National Library of Medicine. 20 July 2010. Retrieved 16 August 2010. Creatine is a chemical that is normally found in the body, mostly in muscles but also in the brain..

  • [20]

    ^Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopolsky M (November 2003). "Effect of creatine and weight training on muscle creatine and performance in vegetarians". Medicine and Science in Sports and Exercise. 35 (11): 1946–55. doi:10.1249/01.MSS.0000093614.17517.79. PMID 14600563..

  • [21]

    ^Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (January 1992). "Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis". The Biochemical Journal. 281 ( Pt 1) (Pt 1): 21–40. doi:10.1042/bj2810021. PMC 1130636. PMID 1731757..

  • [22]

    ^Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS (February 2009). "The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels". Journal of the International Society of Sports Nutrition. 6 (1): 6. doi:10.1186/1550-2783-6-6. PMC 2649889. PMID 19228401..

  • [23]

    ^Wallimann T, Tokarska-Schlattner M, Schlattner U (May 2011). "The creatine kinase system and pleiotropic effects of creatine". Amino Acids. 40 (5): 1271–96. doi:10.1007/s00726-011-0877-3. PMC 3080659. PMID 21448658...

  • [24]

    ^T. Wallimann, M. Tokarska-Schlattner, D. Neumann u. a.: The Phosphocreatine Circuit: Molecular and Cellular Physiology of Creatine Kinases, Sensitivity to Free Radicals, and Enhancement by Creatine Supplementation. In: Molecular System Bioenergetics: Energy for Life. 22. November 2007. doi:10.1002/9783527621095.ch7C.

  • [25]

    ^"L-Arginine:Glycine Amidinotransferase". Retrieved 16 August 2010..

  • [26]

    ^Braissant O, Henry H, Béard E, Uldry J (May 2011). "Creatine deficiency syndromes and the importance of creatine synthesis in the brain". Amino Acids. 40 (5): 1315–24. doi:10.1007/s00726-011-0852-z. PMID 21390529..

  • [27]

    ^Bemben MG, Lamont HS (2005). "Creatine supplementation and exercise performance: recent findings". Sports Medicine. 35 (2): 107–25. doi:10.2165/00007256-200535020-00002. PMID 15707376..

  • [28]

    ^Bird SP (December 2003). "Creatine supplementation and exercise performance: a brief review". Journal of Sports Science & Medicine. 2 (4): 123–32. PMC 3963244. PMID 24688272..

  • [29]

    ^Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F (September 2015). "Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses". Sports Medicine. 45 (9): 1285–1294. doi:10.1007/s40279-015-0337-4. PMID 25946994..

  • [30]

    ^Engelhardt M, Neumann G, Berbalk A, Reuter I (July 1998). "Creatine supplementation in endurance sports". Medicine and Science in Sports and Exercise. 30 (7): 1123–9. doi:10.1097/00005768-199807000-00016. PMID 9662683.[obsolete source].

  • [31]

    ^Graham AS, Hatton RC (1999). "Creatine: a review of efficacy and safety". Journal of the American Pharmaceutical Association. 39 (6): 803–10, quiz 875–7. PMID 10609446.[obsolete source].

  • [32]

    ^"Office of Dietary Supplements - Dietary Supplements for Exercise and Athletic Performance" (in 英语). Retrieved 2018-05-05..

  • [33]

    ^https://web.archive.org/web/20221025085117/http://jtoomim.org/files/Ling_2009-Cognitive_effects_of_creatine_ethyl_ester_supplementation.pdf.

  • [34]

    ^https://web.archive.org/web/20221025085117/https://nootropicsexpert.com/creatine/.

  • [35]

    ^https://web.archive.org/web/20221025085117/https://www.paleofx.com/nootropics-creatine/.

  • [36]

    ^GIEßING, Jürgen. Kreatin: Eine natürliche Substanz und ihre Bedeutung für Muskelaufbau, Fitness und Anti-Aging. pp. 135–136, 207..

  • [37]

    ^WALLIMANN, Theo (2014). "Positive Wirkung von Kreatin im Alter und für Rehabilitation" (PDF). Schweizer Zeitschrift für Ernährungsmedizin (2): 31–33. ISSN 1660-4695..

  • [38]

    ^Francaux M, Poortmans JR (December 2006). "Side effects of creatine supplementation in athletes". International Journal of Sports Physiology and Performance. 1 (4): 311–23. doi:10.1123/ijspp.1.4.311. PMID 19124889..

  • [39]

    ^"International Society of Sports Nutrition position stand: creatine supplementation and exercise". jissn. Retrieved 19 January 2012..

  • [40]

    ^Cooper R, Naclerio F, Allgrove J, Jimenez A (July 2012). "Creatine supplementation with specific view to exercise/sports performance: an update". Journal of the International Society of Sports Nutrition. 9 (1): 33. doi:10.1186/1550-2783-9-33. PMC 3407788. PMID 22817979..

  • [41]

    ^Michele LaBotz, MD, FAAP. "Performance-Enhancing Substances" (PDF). American Academy of Pediatrics, Council on Sports Medicine and Fitness.CS1 maint: Multiple names: authors list (link).

  • [42]

    ^Persky AM, Rawson ES (2007). Safety of creatine supplementation. Sub-Cellular Biochemistry. Subcellular Biochemistry. 46. pp. 275–89. doi:10.1007/978-1-4020-6486-9_14. ISBN 978-1-4020-6485-2. PMID 18652082..

  • [43]

    ^WebMD, WebMD. "Creatine". WebMD. Natural Medicines Comprehensive Database Consumer Version. Retrieved 3 November 2014..

  • [44]

    ^Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL (2017-06-13). "International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine". Journal of the International Society of Sports Nutrition. 14: 18. doi:10.1186/s12970-017-0173-z. PMC 5469049. PMID 28615996..

  • [45]

    ^Lopez RM, Casa DJ, McDermott BP, Ganio MS, Armstrong LE, Maresh CM (2009). "Does creatine supplementation hinder exercise heat tolerance or hydration status? A systematic review with meta-analyses". Journal of Athletic Training. 44 (2): 215–23. doi:10.4085/1062-6050-44.2.215. PMC 2657025. PMID 19295968..

  • [46]

    ^Dalbo VJ, Roberts MD, Stout JR, Kerksick CM (July 2008). "Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration". British Journal of Sports Medicine. 42 (7): 567–73. doi:10.1136/bjsm.2007.042473. PMID 18184753..

  • [47]

    ^NIH, NIH. "Caffeine and progression of Parkinson's disease: A deleterious interaction with creatine". Clin Neuropharmacol. PMC 4573899..

  • [48]

    ^Moreta S, Prevarin A, Tubaro F (June 2011). "Levels of creatine, organic contaminants and heavy metals in creatine dietary supplements". Food Chemistry. 126 (3): 1232–1238. doi:10.1016/j.foodchem.2010.12.028..

  • [49]

    ^"Heterocyclic Amines in Cooked Meats". National Cancer Institute. 15 Sep 2004. Retrieved 2007-08-09..

  • [50]

    ^"Chemicals in Meat Cooked at High Temperatures and Cancer Risk". National Cancer Institute..

  • [51]

    ^Dahl, Olle (1 July 1963). "Meat Quality Measurement, Creatine Content as an Index of Quality of Meat Products". Journal of Agricultural and Food Chemistry. 11 (4): 350–355. doi:10.1021/jf60128a026..

  • [52]

    ^Kamber M, Koster M, Kreis R, Walker G, Boesch C, Hoppeler H (December 1999). "Creatine supplementation--part I: performance, clinical chemistry, and muscle volume". Medicine and Science in Sports and Exercise. 31 (12): 1763–9. doi:10.1097/00005768-199912000-00011. PMID 10613426..

  • [53]

    ^Deldicque L, Décombaz J, Zbinden Foncea H, Vuichoud J, Poortmans JR, Francaux M (January 2008). "Kinetics of creatine ingested as a food ingredient". European Journal of Applied Physiology. 102 (2): 133–43. doi:10.1007/s00421-007-0558-9. PMID 17851680..

  • [54]

    ^Baselt R (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, CA: Biomedical Publicationsm. pp. 366–368..

  • [55]

    ^Hespel P, Eijnde BO, Derave W, Richter EA (2001). "Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle". Canadian Journal of Applied Physiology. 26 Suppl: S79–102. doi:10.1139/h2001-045. PMID 11897886..

  • [56]

    ^Pastula DM, Moore DH, Bedlack RS (December 2012). "Creatine for amyotrophic lateral sclerosis/motor neuron disease". The Cochrane Database of Systematic Reviews. 12: CD005225. doi:10.1002/14651858.CD005225.pub3. PMID 23235621..

  • [57]

    ^Kley RA, Tarnopolsky MA, Vorgerd M (June 2013). "Creatine for treating muscle disorders". The Cochrane Database of Systematic Reviews (6): CD004760. doi:10.1002/14651858.CD004760.pub4. PMID 23740606..

  • [58]

    ^Xiao Y, Luo M, Luo H, Wang J (June 2014). "Creatine for Parkinson's disease". The Cochrane Database of Systematic Reviews (6): CD009646. doi:10.1002/14651858.cd009646.pub2. PMID 24934384..

阅读 3.2w
版本记录
  • 暂无