The Wayback Machine - https://web.archive.org/web/20221025115333/https://baike.sogou.com/kexue/d11051.htm

血压

编辑

血压(BP)是指循环血液对血管壁的压力。这种压力大部分是由于心脏通过循环系统泵送血液所产生的。在没有特别说明的情况下,“血压”通常指体循环大动脉中的压力。血压通常用收缩压(一次心跳期间的最大值)和舒张压(两次心跳之间的最小值)来表示,并以高于环境大气压力的毫米汞柱作为单位。

血压和呼吸频率、心率、氧饱和度以及体温一样,是生命体征之一。成年人静息状态下的正常收缩压约为 120 millimetres of mercury (16 kilopascals) ,舒张压约为80 millimetres of mercury (11 kilopascals) ,缩写为“120/80”mmHg "。从1975年至今,全球年龄标准化平均血压大体保持不变。男性为127/79 mmHg,女性为122/77 mmHg。[1]

传统的血压测量方式是使用水银血压计进行无创测量。[2] 临床上,听诊法仍然被普遍认为是无创血压测量的金标准。[3] 然而,半自动测量法已经普及,主要是因为水银血压计潜在的汞毒性,[4] 尽管成本更高,其易用性和对动态血压或家庭血压测量的适用性也影响了这一趋势。[5] 早期水银血压计的自动化替代品存在较大误差,但经过国际标准验证的现代仪器在两种标准化读数方法之间的平均差异已小于5 毫米汞柱,标准偏差小于8 毫米汞柱。[5] 这些半自动方法大多使用示波法测量血压。[6]

血压受心输出量、总外周阻力和动脉僵硬度的影响,并根据环境、情绪状态、活动和相对健康/疾病状态而变化。 短期内,血压由压力感受器调节,压力感受器通过大脑影响神经和内分泌系统。

过低的血压称为低血压,持续过高的血压称为高血压。引起低血压或高血压的原因很多,可能是突发性或持续性的。长期高血压可诱发许多疾病,包括心脏病、中风和肾衰竭。 长期高血压比长期低血压更常见,后者通常只有在引起症状时才被诊断出来。

1 分类、正常和异常值编辑

1.1 体循环动脉压

欧洲心脏病学会高血压管理专题组和欧洲高血压学会血压分类 a办公室对高血压 b的定义及程度 该分类适用于16岁及以上人群。 a 根据临床静坐收缩压和舒张压最大值对血压分类。 b 根据下表收缩压值范围,单纯收缩期高血压被分为1,2,3级。
类型 收缩压, mmHg 舒张压, mmHg
理想 < 120 < 80
正常 120–129 80–84
正常偏高 130–139 85–89
1级高血压 140–159 90–99
2级高血压 160–179 100–109
3级高血压 ≥ 180 ≥ 110
单纯收缩期高血压 ≥ 140 < 90

当血压高于115/75 mmHg时,患心血管疾病的风险逐渐增加,[7] 低于这一水平时则证据有限。[8]

观察性研究表明,动脉压维持在正常血压范围下限的人能更好地保持长期心血管健康。关于使用药物将高血压患者(尤其是老年人)血压降低至多少为最佳血压水平,医学上一直存在争议。[9]

下表显示了欧洲心脏病学会(ESC)高血压管理专题组和欧洲高血压学会(ESH)血压分类办公室对血压的最新分类(2018年)。[10] 美国心脏协会对18岁及以上的成年人采用了类似的阈值,[11] 但在2017年11月,美国心脏协会修订了血压类别的定义,将更多人纳入了高血压人群。[12]

血压时刻在波动,通常在24小时内呈现昼夜节律,[13] 早上和傍晚读数最高,夜间读数最低。[14][15] 夜间血压无法正常下降就意味着未来患心血管疾病的风险更大,有证据表明夜间血压比白天血压更能预测心血管事件。[16] 血压在更长的时间内(几个月到几年)变化,这种可变性预示着不良结果。[17] 血压也会随着温度、噪音、情绪压力、食物或液体的消耗、饮食因素、身体活动、姿势的变化(如站立、药物和疾病)而变化。[18] 由于血压的可变性和动态血压测量的预测价值,一些权威机构,如英国的国家健康和护理卓越研究所,开始提倡使用动态血压作为诊断高血压的首选方法。[19]

其他各种因素,如年龄和性别,也会影响一个人的血压。左臂和右臂的血压测量值往往相差不大。然而,偶尔会有大于10 mmHg的情况,可能需要进一步检查,例如外周动脉疾病或阻塞性动脉疾病。[20][21][22]

低血压尚无统一的诊断标准,不过一般低于90/60 mmHg即为低血压。[23] 临床上,只有出现症状时,才会被诊断为低血压。[24]

1.2 体循环动脉压和年龄

胎儿血压

妊娠期间,胎儿的心脏而非母亲的心脏增加了胎儿的血压,促进胎儿血液循环。怀孕第20周时,胎儿主动脉的血压大约是30 mmHg, 怀孕第40周时,增加到约45 mmHg。[25]

足月婴儿的平均血压:[26]

  • 收缩压65–95 mmHg 
  • 舒张压30–60 mmHg

童年

儿童血压参考范围 [27]
阶段 大致年龄 收缩压, mmHg 舒张压, mmHg
婴儿 1~12个月 75–100 50–70
幼儿和学龄前儿童 1~5岁 80–110 50–80
学龄期儿童 6~12岁 85–120 50–80
青少年 13~18岁 95–140 60–90

儿童血压的正常范围低于成人,且取决于身高。[28] 根据不同国家儿童的血压分布,确定了儿童参考血压值。[29]

老年人

在大多数社会的成年人中,收缩压从成年早期开始上升,直至70岁或以上;[30][31] 舒张压往往也同时开始上升,但在中年,大约55岁开始下降。[31] 平均血压从成年早期开始上升,中年达到稳定,而脉压在40岁后明显上升。因此,在许多老年人中,收缩压经常超过成人正常血压范围,[31] 如果舒张压在正常范围内,这称为单纯收缩期高血压。脉压随着年龄的增长而上升,这归因于动脉硬度的增加。[32] 增龄性的血压增长变化是不健康的,在一些孤立的未涵化的群体中未观察到这一情况。[33]

2 体循环静脉压编辑

Site Normal
pressure range
(in mmHg)[34]
Central venous pressure 3–8
Right ventricular pressure systolic 15–30
diastolic 3–8
Pulmonary artery pressure systolic 15–30
diastolic 4–12
Pulmonary vein/

Pulmonary capillary wedge pressure

2–15
Left ventricular pressure systolic 100–140
diastolic 3–12

血压通常指体循环中的动脉压。然而,静脉系统和肺血管中的压力测量在重症监护医学中起着重要作用,但是需要使用导管进行侵入性压力测量。

静脉血压是指静脉或心脏心房的血管压力。它比动脉压低得多,一般右心房压为5 mmHg,左心房压为8 mmHg。

静脉压力的变化包括:

  • 中心静脉压,与右心房压相近,[35] 这是右心室舒张末期容积的主要决定因素。(但是,在某些情况下可能会有例外。)[36]
  • 颈静脉压(JVP)是静脉系统上间接观察到的压力。它可用于区分不同形式的心肺疾病。
  • 门静脉压力是门静脉的血压。通常是5-10mmHg。 [37]

3 肺动脉压编辑

静息状态下,肺动脉中的压力通常约为15 mmHg。[38]

肺毛细血管中的血压升高会导致肺动脉高压,如果血压升高于20 mmHg,会导致间质性水肿 ,高于25 mmHg会导致肺水肿 。[39]

4 体循环平均血压编辑

如果心脏停止跳动,血压会下降,但不会降到零。心跳停止和血液在整个循环中重新分布后测得的剩余压力称为体循环平均血压或体循环平均充盈压;[40] 通常约为7 mmHg。[40]

5 血压失调编辑

血压控制障碍包括高血压、低血压和血压波动过大或不适应。

5.1 高血压

持续性高血压的主要并发症总览

动脉高血压可以作为其他问题的指标,并可能产生长期的不良影响。有时可能引起严重的问题,例如高血压急症。

动脉压力水平给动脉壁带来机械压力。较高的压力会增加心脏负荷,加剧动脉壁内的不健康组织生长(动脉粥样硬化)。压力越高,心脏负荷就越大,动脉粥样硬化就越容易发展,心肌随着时间的推移会增厚、增大并且变弱。

持续高血压是中风、心脏病发作、心力衰竭和动脉瘤的危险因素之一,也是慢性肾衰竭的主要原因。即使动脉压小幅升高也会导致预期寿命缩短。在非常高的压力下,平均动脉压比平均水平高出50%或以上,如果不得到适当治疗,患者只能生存几年。[41]

过去,人们最关注的是舒张压;但是现在人们认识到高收缩压和高脉压(收缩压和舒张压之间的数值差)也同样是危险因素。在某些情况下,过度舒张压的降低实际上可能会增加风险,这可能是由于收缩压和舒张压之间的差异增大。如果收缩压升高(大于140 mmHg),舒张压正常(小于90 mmHg),它被称为“单纯性收缩期高血压”,可能会引起健康问题。[42][43]

对于心脏瓣膜返流的患者,病情的严重程度可能与舒张压的变化有关。 在一项对心脏瓣膜返流患者的研究中,对每个人间隔2周的测量结果进行比较,当舒张压升高时,主动脉和二尖瓣返流的严重程度增加,而当舒张压降低时,严重程度降低。[44]

5.2 低血压症

血压过低称为低血压。如果引起的迹象或症状,如头晕,晕厥,或在极端情况下,循环休克,则需要药物救治。[45]

动脉压低的原因包括:[46]

  • 败血症
  • 出血——失血
  • 心原性休克
  • 神经介导性低血压(或反射性晕厥)
  • 毒素,包括有毒剂量的血压药物
  • 激素异常,如爱迪生氏病
  • 饮食失调,特别是神经性厌食症和贪食症

直立性低血压

站立时血压大幅下降(收缩压/舒张压持续下降大于20/10 mmHg)被称为直立性低血压(体位性低血压),这意味着身体无法补偿重力对循环的影响。站立会导致下肢血管中的静水压增加。横膈膜下静脉(静脉池)的扩张导致大约500毫升的血液从胸腔和上身重新流出。这导致中心血容量的快速减少和心室预负荷的减少,反过来又减少了中风容量和平均动脉压。通常可以通过多种机制来补偿,包括自主神经系统的激活,增加心率、心肌收缩力和全身动脉血管收缩以保持血压,并引起静脉血管收缩以降低静脉顺应性。静脉顺应性降低也是由于静脉平滑肌张力的内在肌源性增加,以适应下体静脉的高压。其他代偿机制包括静脉-小动脉轴突反射、“骨骼肌泵”和“呼吸泵”。这些机制通常在一分钟以内稳定血压。[47] 如果这些补偿机制失效,动脉压和血流量下降超过某一点,大脑灌注就会严重受损(即血液供应不足),导致头晕、头晕、虚弱或昏厥。[48] 通常这种补偿的失败是影响交感神经系统的疾病或药物所致。[47] 在经历过大重力(重力负荷)后,也观察到了类似的效果,例如特技飞行或战斗飞行员“拉重力”时经常会遇到的极端静水压超过身体补偿机制能力的情况。

5.3 血压波动

血压的正常波动是有适应性的,也是必要的。明显高于正常值的压力波动与白质高强度有关,这一发现会引起局部脑血流减少[49] 并提高脑血管疾病的风险。[50] 在高血压组和低血压组中,与波动较小的情况相比,较大程度的波动与脑血管疾病的增加成正相关,这表明需要考虑血压波动的临床管理,即使在血压正常的老年人中也是如此。[50] 老年人和接受过血压药物治疗的人更有可能出现较大的血压波动。[50]

6 生理学编辑

心脏收缩与舒张

在每次心跳期间,血压在最大值(收缩压)和最小值(舒张压)之间变化。[51] 体循环的血压主要是由于心脏的泵送作用。[52] 平均血压的差异驱动血液循环流动。平均血流速度取决于血压和血管对血流的阻力。在没有流体静力效应的情况下(例如站立),由于能量的粘性损失,当循环血液通过动脉和毛细血管离开心脏时,平均血压降低。平均血压在整个循环中下降,尽管大多数情况发生在小动脉和小动脉中。[53] 尽管在毛细血管中观察到一些传输的脉动,但在动脉循环的较小部分脉动也减小了。[54]

体循环血压图解

重力通过静水压力(例如站立时)影响血压,静脉瓣膜、呼吸和骨骼肌收缩产生的泵也影响血压,尤其是静脉。[52]

6.1 血液动力学

简单来说,体循环动脉压血流动力学基于平均动脉压和脉压。对血压的影响主要体现在对心输出量[55] 和对体循环血管阻力的影响。心输出量是每搏输出量和心率的乘积,每搏输出量受血容量的影响。短期内,血容量越大,心输出量越高。这可以部分解释食盐摄入量与血压升高之间的关系,即食盐摄入量的增加可能会增加血容量,从而可能导致动脉压升高。然而,这因人而异,且关键取决于自主神经系统反应和肾素-血管紧张素系统。[56][57][58] 从长期来看,血容量和血压之间的关系更加复杂。[59] 简而言之,全身血管阻力主要由小动脉和小动脉的口径决定。血管的阻力取决于哈根-泊肃叶方程描述的血管半径 (阻力∝1/半径4)。因此,半径越小,阻力就越大。影响阻力的其他物理因素包括:血管长度(血管越长,阻力越大)、血液粘度(粘度越高,阻力越大)[60] 以及血管的数量,尤其是众多小动脉和毛细血管。动脉狭窄增加了血流阻力,然而这种阻力的增加一般不会使系统血压上升,因为它对总系统阻力的贡献很小,尽管它可能会大大降低下游血流。[61] 被称为血管收缩剂的物质会降低血管的口径,从而增加血压。血管扩张剂(如硝酸甘油)增加血管口径,从而降低动脉压。从长期来看,重塑的过程也有助于改变小血管的口径,并影响对血管活性剂的抗性和反应性。[62][63] 毛细血管密度的降低,称为毛细血管稀疏,在某些情况下也可能导致阻力增加。[64]

实际上,每个人的自主神经系统和其他调节血压的系统,特别是肾脏,[65] 应对和调节所有这些因素,因此,尽管上述问题很重要,但很少单独行动,并且给定个体的实际动脉压的反应从短期和长期来看会有很大差异。

6.2 平均动脉压

平均动脉压是心动周期内血压的平均值,由心输出量、体循环血管阻力和中心静脉压决定:[66][67][68]

 

在实际计算中,CVP(较小)的影响通常被忽略,因此

 

最大动脉压可以通过测量收缩压和舒张压来估计    舒张压   [68]

 

6.3 脉压

一个心动周期上动脉压波形示意图。曲线中的槽口与主动脉瓣闭合相关。

脉压是测量的收缩压和舒张压之间的差值,[69]

 

脉压是心输出量(即心跳)脉动性质的结果。脉压的大小通常归因于心脏的冲程容积、动脉系统的顺应性(扩张能力)——主要归因于主动脉和大弹性动脉——以及动脉树中的流动阻力的相互作用。[69]

6.4 血压调节

我们对动脉压的内源性调控了解还不是很全面,但已对下列调节动脉压的机制做出了很好的描述:

  • 压力感受器反射:高压感受器区的压力感受器检测动脉压力的变化。这些压力感受器最终将信号发送到脑干的延髓,特别是头端腹外侧延髓(RVLM)。髓质通过自主神经系统,通过改变心脏收缩的力和速度以及全身血管阻力来调节平均动脉压。最重要的动脉压力感受器位于左右颈动脉窦和主动脉弓。[70]
  • 肾素-血管紧张素系统:该系统因其对动脉压的长期调节而广为人知。这个系统允许肾脏通过激活血管紧张素ⅱ的内源性血管收缩剂来补偿血容量的损失或动脉压的下降。
  • 醛固酮释放:这种类固醇激素在血管紧张素ⅱ或高血清钾水平下从肾上腺皮质释放。醛固酮刺激肾脏钠潴留和钾排泄。由于钠是通过渗透作用决定血管中液体量的主要离子,醛固酮会增加液体潴留,并间接增加动脉压。
  • 低压受体区(主要在腔静脉、肺静脉和心房)的压力受体通过调节抗利尿激素(ADH/血管加压素)、肾素和醛固酮的分泌而产生反馈。根据心脏的弗兰克-斯特林定律,由此血容量增加导致心输出量增加,进而增加动脉血压。

正如RAS和醛固酮释放之间的联系所示,这些不同的机制不一定相互独立。当血压下降时,许多生理级联反应开始,以便将血压恢复到更合适的水平。

  1. 血压下降是通过血流量的减少和肾小球滤过率的降低来检测的。
  2. 肾小球滤过率的降低体现在致密斑钠中钠离子水平的降低。
  3. 致密斑导致钠的重吸收增加,这导致水通过渗透进入,从而增加血浆体积。此外,致密斑释放腺苷,导致传入小动脉收缩。
  4. 同时,肾小球旁细胞感觉血压下降并释放肾素。
  5. 肾素将血管紧张素原(非活性形式)转化为血管紧张素ⅰ(活性形式)。
  6. 血管紧张素ⅰ在血流中流动,直到到达肺部毛细血管,血管紧张素转换酶作用于血管紧张素ⅰ,将其转换为血管紧张素ⅱ。
  7. 血管紧张素ⅱ是一种血管收缩剂,它会增加流向心脏的血流,进而增加预负荷,最终增加心输出量。
  8. 血管紧张素ⅱ也会使更多肾上腺醛固酮得以释放。
  9. 醛固酮进一步增加钠+ 和H2肾单位远曲小管的再吸收。

目前,血管紧张素转换酶抑制剂和血管紧张素ⅱ受体拮抗剂(也称为血管紧张素受体阻滞剂)在药理学上靶向血管紧张素转换酶。醛固酮系统直接被醛固酮拮抗剂螺内酯靶向。利尿剂可以靶向液体滞留;利尿剂的抗高血压作用是由于它对血容量的影响。一般来说,压力感受器反射不是高血压的目标,因为如果被阻断,个体可能会出现直立性低血压和晕厥。

7 测量编辑

Taking blood pressure with a sphygmomanometer

动脉压通常是通过血压计测量的,血压计使用水银柱的高度或膜盒压力计,通过听诊来反映血压。[2] 最常见的自动血压测量技术基于示波法。[71] 自1981年以来,全自动示波测量技术得以使用。[72] 近期以来,人们通过这一原理使用智能手机测量血压。[73] 通过穿透动脉壁进行压力测量的侵入式测量方法不太常见,通常仅限于医院。 目前正在探索新的方法,在不穿透动脉壁,也不在病人身上施加任何压力的情况下测量血压。这些方法增加了血压监测舒适度和接受度,被称为无袖带式血压测量。举例来说,手腕上的无袖带式血压监测仪只使用光学传感器。 [74]

8 其他动物的血压编辑

非人哺乳动物的血压与人的血压相似。相反,心率明显不同,主要取决于动物的大小(较大的动物心率较慢)。[75] 和人类一样,动物的血压因年龄、性别、时间和环境而异:[76][77] 在实验室或麻醉中进行的测量可能不能代表自由生活条件下的数值。大鼠、小鼠、狗和兔子被广泛用于研究高血压诱因。[78]

哺乳动物的血压及心率 (改编自 [76])
物种 收缩压,

mm Hg

舒张压,

mm Hg

心率,

每分钟心跳次数

140 70 75–146
155 68 100–259
161 51 62–170
山羊 140 90 80–120
豚鼠 140 90 240–300
小鼠 120 75 580–680
169 55 74–116
118 67 205–306
大鼠 153 51 305–500
恒河猴 160 125 180–210
绵羊 140 80 63–210

8.1 猫和狗的高血压

猫和狗的血压如果高于150 mmHg(收缩压)和/或95 mmHg(舒张压),则可被诊断为高血压。[77]

参考文献

  • [1]

    ^"Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants". The Lancet. 389 (10064): 37–55. January 2017..

  • [2]

    ^Booth J (November 1977). "A short history of blood pressure measurement". Proceedings of the Royal Society of Medicine. 70 (11): 793–9. PMC 1543468. PMID 341169..

  • [3]

    ^Grim CE, Grim CM (March 2016). "Auscultatory BP: still the gold standard". Journal of the American Society of Hypertension. 10 (3): 191–3. doi:10.1016/j.jash.2016.01.004. PMID 26839183..

  • [4]

    ^O'Brien E (January 2001). "Blood pressure measurement is changing!". Heart. 85 (1): 3–5. doi:10.1136/heart.85.1.3. PMC 1729570. PMID 11119446..

  • [5]

    ^Ogedegbe G, Pickering T (November 2010). "Principles and techniques of blood pressure measurement". Cardiology Clinics. 28 (4): 571–86. doi:10.1016/j.ccl.2010.07.006. PMC 3639494. PMID 20937442..

  • [6]

    ^Alpert BS, Quinn D, Gallick D (December 2014). "Oscillometric blood pressure: a review for clinicians". Journal of the American Society of Hypertension. 8 (12): 930–8. doi:10.1016/j.jash.2014.08.014. PMID 25492837..

  • [7]

    ^Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM (February 2006). "Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association". Hypertension. 47 (2): 296–308. CiteSeerX 10.1.1.617.6244. doi:10.1161/01.HYP.0000202568.01167.B6. PMID 16434724..

  • [8]

    ^Lewington S, Clarke R, Qizilbash N, Peto R, Collins R (December 2002). "Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies". Lancet. 360 (9349): 1903–13. doi:10.1016/S0140-6736(02)11911-8. PMID 12493255..

  • [9]

    ^Yusuf S, Lonn E (November 2016). "The SPRINT and the HOPE-3 Trial in the Context of Other Blood Pressure-Lowering Trials". JAMA Cardiology. 1 (8): 857–858. doi:10.1001/jamacardio.2016.2169. PMID 27602555..

  • [10]

    ^Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. (September 2018). "2018 ESC/ESH Guidelines for the management of arterial hypertension". European Heart Journal. 39 (33): 3021–3104. doi:10.1093/eurheartj/ehy339. PMID 30165516..

  • [11]

    ^"Understanding blood pressure readings". American Heart Association. 11 January 2011. Retrieved 30 March 2011..

  • [12]

    ^"Nearly half of US adults could now be classified with high blood pressure, under new definitions". American Heart Association. 13 November 2017. Retrieved 14 November 2017..

  • [13]

    ^Smolensky MH, Hermida RC, Portaluppi F (June 2017). "Circadian mechanisms of 24-hour blood pressure regulation and patterning". Sleep Medicine Reviews. 33: 4–16. doi:10.1016/j.smrv.2016.02.003. PMID 27076261..

  • [14]

    ^van Berge-Landry HM, Bovbjerg DH, James GD (October 2008). "Relationship between waking-sleep blood pressure and catecholamine changes in African-American and European-American women". Blood Pressure Monitoring. 13 (5): 257–62. doi:10.1097/MBP.0b013e3283078f45. PMC 2655229. PMID 18799950. Table2: Comparison of ambulatory blood pressures and urinary norepinephrine and epinephrine excretion measured at work, home, and during sleep between European–American (n = 110) and African–American (n = 51) women.

  • [15]

    ^van Berge-Landry HM, Bovbjerg DH, James GD (October 2008). "Relationship between waking-sleep blood pressure and catecholamine changes in African-American and European-American women". Blood Pressure Monitoring. 13 (5): 257–62. doi:10.1097/MBP.0b013e3283078f45. PMC 2655229. PMID 18799950. NIHMS90092..

  • [16]

    ^Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA (January 2011). "Predictive role of the nighttime blood pressure". Hypertension. 57 (1): 3–10. doi:10.1161/HYPERTENSIONAHA.109.133900. PMID 21079049..

  • [17]

    ^Rothwell PM (June 2011). "Does blood pressure variability modulate cardiovascular risk?". Current Hypertension Reports. 13 (3): 177–86. doi:10.1007/s11906-011-0201-3. PMID 21465141..

  • [18]

    ^H.), Schmidt, T. F. H. (Thomas F. (1992). Temporal Variations of the Cardiovascular System. Engel, Bernard T., Blümchen, Gerhard. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 9783662027486. OCLC 851391490..

  • [19]

    ^National Clinical Guideline Centre (UK) (2011). Hypertension: The Clinical Management of Primary Hypertension in Adults: Update of Clinical Guidelines 18 and 34. National Institute for Health and Clinical Excellence: Guidance. London: Royal College of Physicians (UK). PMID 22855971..

  • [20]

    ^Eguchi K, Yacoub M, Jhalani J, Gerin W, Schwartz JE, Pickering TG (February 2007). "Consistency of blood pressure differences between the left and right arms". Arch Intern Med. 167 (4): 388–93. doi:10.1001/archinte.167.4.388. PMID 17325301..

  • [21]

    ^Agarwal R, Bunaye Z, Bekele DM (March 2008). "Prognostic significance of between-arm blood pressure differences". Hypertension. 51 (3): 657–62. doi:10.1161/HYPERTENSIONAHA.107.104943. PMID 18212263..

  • [22]

    ^Clark, C. E.; Campbell, J. L.; Evans, P. H.; Millward, A. (December 2006). "Prevalence and clinical implications of the inter-arm blood pressure difference: A systematic review". Journal of Human Hypertension. 20 (12): 923–931. doi:10.1038/sj.jhh.1002093. ISSN 0950-9240. PMID 17036043..

  • [23]

    ^Sharma S, Bhattacharya PT (2018). Hypotension. StatPearls. StatPearls Publishing. PMID 29763136. Retrieved 2018-12-23..

  • [24]

    ^Mayo Clinic staff (2009-05-23). "Low blood pressure (hypotension) – Causes". MayoClinic.com. Mayo Foundation for Medical Education and Research. Retrieved 2010-10-19..

  • [25]

    ^Struijk PC, Mathews VJ, Loupas T, Stewart PA, Clark EB, Steegers EA, Wladimiroff JW (October 2008). "Blood pressure estimation in the human fetal descending aorta". Ultrasound Obstet Gynecol. 32 (5): 673–81. doi:10.1002/uog.6137. PMID 18816497..

  • [26]

    ^Sharon SM, Emily SM (2006). Foundations of Maternal-Newborn Nursing (4th ed.). Philadelphia: Elsevier. p. 476..

  • [27]

    ^Pediatric Age Specific, p. 6. Revised 6/10. By Theresa Kirkpatrick and Kateri Tobias. UCLA Health System.

  • [28]

    ^National Heart, Lung and Blood Institute. "Blood pressure tables for children and adolescents".CS1 maint: Uses authors parameter (link) (Note that the median blood pressure is given by the 50th percentile and hypertension is defined by the 95th percentile for a given age, height, and sex.).

  • [29]

    ^Chiolero A (Mar 2014). "The quest for blood pressure reference values in children". Journal of Hypertension. 32 (3): 477–79. doi:10.1097/HJH.0000000000000109. PMID 24477093..

  • [30]

    ^Wills AK, Lawlor DA, Matthews FE, Sayer AA, Bakra E, Ben-Shlomo Y, Benzeval M, Brunner E, Cooper R, Kivimaki M, Kuh D, Muniz-Terrera G, Hardy R (June 2011). "Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts". PLoS Medicine. 8 (6): e1000440. doi:10.1371/journal.pmed.1000440. PMC 3114857. PMID 21695075..

  • [31]

    ^Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA, Kannel WB, Levy D (July 1997). "Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study". Circulation. 96 (1): 308–15. doi:10.1161/01.CIR.96.1.308. PMID 9236450..

  • [32]

    ^Franklin SS (2008-05-01). "Beyond blood pressure: Arterial stiffness as a new biomarker of cardiovascular disease". Journal of the American Society of Hypertension. 2 (3): 140–51. doi:10.1016/j.jash.2007.09.002. PMID 20409896..

  • [33]

    ^Gurven, Michael; Blackwell, Aaron D.; Rodríguez, Daniel Eid; Stieglitz, Jonathan; Kaplan, Hillard (July 2012). "Does blood pressure inevitably rise with age?: longitudinal evidence among forager-horticulturalists". Hypertension (Dallas, Tex.: 1979). 60 (1): 25–33. doi:10.1161/bgvvggg.111.189100. ISSN 1524-4563. PMC 3392307. PMID 22700319..

  • [34]

    ^Table 30-1 in: Trudie A Goers; Washington University School of Medicine Department of Surgery; Klingensmith, Mary E; Li Ern Chen; Sean C Glasgow (2008). The Washington manual of surgery. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 0-7817-7447-0..

  • [35]

    ^"Central Venous Catheter Physiology". Archived from the original on 2008-08-21. Retrieved 2009-02-27..

  • [36]

    ^Tkachenko BI, Evlakhov VI, Poyasov IZ (2002). "Independence of changes in right atrial pressure and central venous pressure". Bull. Exp. Biol. Med. 134 (4): 318–20. doi:10.1023/A:1021931508946. PMID 12533747..

  • [37]

    ^"Esophageal Varices : Article Excerpt by: Samy A Azer". eMedicine. Retrieved 2011-08-22..

  • [38]

    ^What Is Pulmonary Hypertension? From Diseases and Conditions Index (DCI). National Heart, Lung, and Blood Institute. Last updated September 2008. Retrieved on 6 April 2009..

  • [39]

    ^Chapter 41, p. 210 in: Cardiology secrets By Olivia Vynn Adair Edition: 2, illustrated Published by Elsevier Health Sciences, 2001 ISBN 1-56053-420-6.

  • [40]

    ^Rothe, C. F. (1993). "Mean circulatory filling pressure: its meaning and measurement". Journal of Applied Physiology. 74 (2): 499–509. doi:10.1152/jappl.1993.74.2.499. ISSN 8750-7587. PMID 8458763..

  • [41]

    ^Textbook of Medical Physiology, 7th Ed., Guyton & Hall, Elsevier-Saunders, ISBN 0-7216-0240-1, p. 220..

  • [42]

    ^"Isolated systolic hypertension: A health concern? – MayoClinic.com". Retrieved 2018-01-25..

  • [43]

    ^"Clinical Management of Isolated Systolic Hypertension". Archived from the original on September 29, 2011. Retrieved 2011-12-07..

  • [44]

    ^Gottdiener JS, Panza JA, St John Sutton M, Bannon P, Kushner H, Weissman NJ (July 2002). "Testing the test: The reliability of echocardiography in the sequential assessment of valvular regurgitation". American Heart Journal. 144 (1): 115–21. doi:10.1067/mhj.2002.123139. PMID 12094197..

  • [45]

    ^"Diseases and conditions index – hypotension". National Heart Lung and Blood Institute. September 2008. Retrieved 2008-09-16..

  • [46]

    ^Braunwald's heart disease : a textbook of cardiovascular medicine. Braunwald, Eugene, 1929-, Bonow, Robert O. (9th ed.). Philadelphia: Saunders. 2012. ISBN 9781437703986. OCLC 671465395..

  • [47]

    ^Ricci, Fabrizio; De Caterina, Raffaele; Fedorowski, Artur (2015-08-18). "Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment". Journal of the American College of Cardiology (in 英语). 66 (7): 848–860. doi:10.1016/j.jacc.2015.06.1084. ISSN 0735-1097. PMID 26271068..

  • [48]

    ^Franco Folino A (2007). "Cerebral autoregulation and syncope". Prog Cardiovasc Dis. 50 (1): 49–80. doi:10.1016/j.pcad.2007.01.001. PMID 17631437..

  • [49]

    ^Thomas AJ, Perry R, Barber R, Kalaria RN, O'Brien JT (2002). "Pathologies and Pathological Mechanisms for White Matter Hyperintensities in Depression". Annals of the New York Academy of Sciences. 977: 333–39. doi:10.1111/j.1749-6632.2002.tb04835.x. PMID 12480770..

  • [50]

    ^Brickman AM, Reitz C, Luchsinger JA, Manly JJ, Schupf N, Muraskin J, DeCarli C, Brown TR, Mayeux R (2010). "Long-term Blood Pressure Fluctuation and Cerebrovascular Disease in an Elderly Cohort". Archives of Neurology. 67 (5): 564–69. doi:10.1001/archneurol.2010.70. PMC 2917204. PMID 20457955..

  • [51]

    ^"Normal Blood Pressure Range Adults". Health and Life. 2010-06-07..

  • [52]

    ^Caro CG (1978). The Mechanics of The Circulation. Oxford [Oxfordshire]: Oxford University Press. ISBN 978-0-19-263323-1..

  • [53]

    ^Klabunde, Richard (2005). Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins. pp. 93–94. ISBN 978-0-7817-5030-1..

  • [54]

    ^Mahler, F.; Muheim, M. H.; Intaglietta, M.; Bollinger, A.; Anliker, M. (1979). "Blood pressure fluctuations in human nailfold capillaries". The American Journal of Physiology. 236 (6): H888–893. doi:10.1152/ajpheart.1979.236.6.H888. ISSN 0002-9513. PMID 443454..

  • [55]

    ^Guyton AC (December 1981). "The relationship of cardiac output and arterial pressure control". Circulation. 64 (6): 1079–88. doi:10.1161/01.cir.64.6.1079. PMID 6794930..

  • [56]

    ^Freis ED (April 1976). "Salt, volume and the prevention of hypertension". Circulation. 53 (4): 589–95. doi:10.1161/01.CIR.53.4.589. PMID 767020..

  • [57]

    ^Caplea A, Seachrist D, Dunphy G, Ely D (April 2001). "Sodium-induced rise in blood pressure is suppressed by androgen receptor blockade". American Journal of Physiology. Heart and Circulatory Physiology. 4. 280 (4): H1793–801. doi:10.1152/ajpheart.2001.280.4.H1793. PMID 11247793..

  • [58]

    ^Houston MC (January 1986). "Sodium and hypertension. A review". Archives of Internal Medicine. 1. 146 (1): 179–85. doi:10.1001/archinte.1986.00360130217028. PMID 3510595..

  • [59]

    ^Titze, Jens; Luft, Friedrich C. (2017). "Speculations on salt and the genesis of arterial hypertension". Kidney International. 91 (6): 1324–1335. doi:10.1016/j.kint.2017.02.034. ISSN 1523-1755. PMID 28501304..

  • [60]

    ^Lee AJ (December 1997). "The role of rheological and haemostatic factors in hypertension". Journal of Human Hypertension. 11 (12): 767–76. doi:10.1038/sj.jhh.1000556. PMID 9468002..

  • [61]

    ^Coffman JD (December 1988). "Pathophysiology of obstructive arterial disease". Herz. 13 (6): 343–50. PMID 3061915..

  • [62]

    ^Korner, P. I.; Angus, J. A. (1992). "Structural determinants of vascular resistance properties in hypertension. Haemodynamic and model analysis". Journal of Vascular Research. 29 (4): 293–312. doi:10.1159/000158945. ISSN 1018-1172. PMID 1391553..

  • [63]

    ^Mulvany, Michael J. (2012). "Small artery remodelling in hypertension". Basic & Clinical Pharmacology & Toxicology. 110 (1): 49–55. doi:10.1111/j.1742-7843.2011.00758.x. ISSN 1742-7843. PMID 21733124..

  • [64]

    ^de Moraes, Roger; Tibirica, Eduardo (2017). "Early Functional and Structural Microvascular Changes in Hypertension Related to Aging". Current Hypertension Reviews. 13 (1): 24–32. doi:10.2174/1573402113666170413095508. ISSN 1875-6506. PMID 28412915..

  • [65]

    ^Norman, Roger A.; Manning, R. Davis; Scheel, Konrad W.; Cowley, Allen W.; Coleman, Thomas G.; Guyton, Arthur C. (1972-05-01). "Arterial pressure regulation: Overriding dominance of the kidneys in long-term regulation and in hypertension". The American Journal of Medicine (in English). 52 (5): 584–594. doi:10.1016/0002-9343(72)90050-2. ISSN 1555-7162.CS1 maint: Unrecognized language (link).

  • [66]

    ^Mayet, J; Hughes, A (2003). "Cardiac and vascular pathophysiology in hypertension". Heart (British Cardiac Society). 89 (9): 1104–9. ISSN 1355-6037. PMC 1767863. PMID 12923045..

  • [67]

    ^Granger, Joey P.; Hall, John E. (2007). "Role of the Kidney in Hypertension". Comprehensive Hypertension. Elsevier. pp. 241–263. doi:10.1016/b978-0-323-03961-1.50026-x. ISBN 978-0-323-03961-1..

  • [68]

    ^Klabunde RE (2007). "Cardiovascular Physiology Concepts – Mean Arterial Pressure". Archived from the original on 2009-10-04. Retrieved 2008-09-29..

  • [69]

    ^Klabunde RE (2007). "Cardiovascular Physiology Concepts – Pulse Pressure". Archived from the original on 2009-10-04. Retrieved 2008-10-02..

  • [70]

    ^Klabunde, RE (2007). "Cardiovascular Physiology Concepts – Arterial Baroreceptors". Retrieved 2008-09-09. Archived version 2009-10-03.

  • [71]

    ^Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Rajan S, Batkin I (2015-01-01). "Oscillometric Blood Pressure Estimation: Past, Present, and Future". IEEE Reviews in Biomedical Engineering. 8: 44–63. doi:10.1109/RBME.2015.2434215. PMID 25993705..

  • [72]

    ^Google patents: Donald Nunn—Apparatus and method for measuring blood pressure.

  • [73]

    ^Chandrasekhar A, Kim CS, Naji M, Natarajan K, Hahn JO, Mukkamala R (March 2018). "Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method". Science Translational Medicine. 10 (431): eaap8674. doi:10.1126/scitranslmed.aap8674. PMC 6039119. PMID 29515001..

  • [74]

    ^Sola J, Bertschi M, Krauss J (September 2018). "Measuring Pressure: Introducing oBPM, the Optical Revolution for Blood Pressure Monitoring". IEEE Pulse. 9 (5). doi:10.1109/MPUL.2018.2856960..

  • [75]

    ^Prothero JW (2015-10-22). The design of mammals : a scaling approach. Cambridge. ISBN 9781107110472. OCLC 907295832..

  • [76]

    ^Gross DR (2009). Animal models in cardiovascular research (3rd ed.). Dordrecht: Springer. p. 5. ISBN 9780387959627. OCLC 432709394..

  • [77]

    ^Brown S, Atkins C, Bagley R, Carr A, Cowgill L, Davidson M, Egner B, Elliott J, Henik R, Labato M, Littman M, Polzin D, Ross L, Snyder P, Stepien R (2007). "Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats". Journal of Veterinary Internal Medicine. 21 (3): 542–58. doi:10.1111/j.1939-1676.2007.tb03005.x. PMID 17552466..

  • [78]

    ^Lerman LO, Chade AR, Sica V, Napoli C (September 2005). "Animal models of hypertension: an overview". The Journal of Laboratory and Clinical Medicine. 146 (3): 160–73. doi:10.1016/j.lab.2005.05.005. PMID 16131455..

阅读 6013
版本记录
  • 暂无