The Wayback Machine - https://web.archive.org/web/20221025130303/https://baike.sogou.com/kexue/d11031.htm

链霉菌

编辑

链霉菌是放线菌中最大的属,也是链霉菌科的模式属。[1]已发现了500多种链霉菌。[2]和其他放线菌一样,链霉菌属革兰氏阳性,基因组中GC含量高。[3]链霉菌主要是在土壤和腐烂的植被中发现的,大多数链霉菌产生孢子,并因独特的“泥土”味而闻名,这种气味是由一种挥发性代谢物土臭素产生的。

链霉菌的特征是复杂的次级代谢。[3]它们生产超过三分之二在临床上有用的天然抗生素(例如新霉素、环磷酰胺、格里森霉素、瓶菌素和氯霉素)。[4][5]现在不常用的链霉素是直接从链霉菌中得名的。链霉菌是罕见的病原体,但人类感染(如霉菌),可由索马里链球菌和苏丹链球菌引起,而植物感染可由豚鼠链球菌、嗜酸链球菌、膨胀链球菌和疥疮链球菌引起。

1 分类学编辑

链霉菌属是链霉菌科的模式属,[6]目前覆盖近576种,数量逐年增加。[7]最初归入该属的嗜酸和耐酸菌株后来被转移到北孢霉(1997)[8] 和链霉属(2003)。[9]物种命名通常基于菌丝和孢子的颜色。

红色糖多孢菌以前属于这个属(作为红色链霉菌)。

2 形态学编辑

链霉菌属包括需氧的革兰氏阳性的丝状细菌,它们产生发育良好带有分枝的营养菌丝(直径在0.5-2.0微米之间)。其形成的复杂基质菌丝体,帮助净化基质中的有机化合物。[10]虽然菌丝和由此产生的气生菌丝是不动的,但流动性是通过孢子的分散来实现的。[10]孢子表面可能是有毛、有皱纹、光滑、多刺或多疣的。[11]在某些物种中,气生菌丝由长而直的丝状体组成,这些细丝或多或少以规则的间隔携带50个或更多孢子,呈螺旋状排列(垂直排列)。顶点的每一个分支在其顶端产生一个伞形花序,它携带两到几个球形到椭圆形、光滑或具皱纹的孢子链。[10]一些菌株在基质菌丝上形成短的孢子链。菌核、皮蛇床子、孢子囊和合成线虫样结构由一些菌株产生。

3 基因组学编辑

“天蓝色链霉菌A3(2)”的全基因组测序结果于2002年发表。[12]当时,“天蓝色链球菌”基因组被认为包含了所有细菌中数量最多的基因。[12]染色体长8667507 bp,GC含量为72.1%,预计含有7825个蛋白质编码基因。[12]在分类学上,“天蓝色链霉菌A3(2)”属于紫葡萄孢菌种,不是一个被妥当描述的独立菌种;“天蓝色A3(2)”不应被误认为真正的天蓝色菌(穆勒,种属名称),尽管为了方便起见,它通常被称为天蓝色。[13]

除虫链霉菌的第一个完整基因组序列于2003年完成。[14]这些基因组中的每一个都形成了具有线性结构的染色体,不像大多数细菌基因组那样以圆形染色体的形式存在。[15]疥疮链球菌的基因组序列已经在桑格研究所确定,疥疮链球菌是能够引起马铃薯疮痂病的一个属。它长10.1 Mbp,编码9107个临时基因,是已知最大的链霉菌基因组序列,可能是由于大的致病岛。[15][16]

4 生物技术编辑

近年来,生物技术研究人员已经开始使用链霉菌进行蛋白质的异种表达。传统上,大肠杆菌是表达真核基因的首选物种,那是因为它易于理解和操作。[17][18]真核蛋白质在大肠杆菌中的表达可能存在问题。有时,蛋白质折叠不当,这可能导致不溶性、包涵体沉积和产物生物活性的丧失。[19]尽管大肠杆菌菌株具有分泌机制,但这些机制效率低,这会导致分泌物进入周质空间,而革兰氏阳性菌如链霉素类直接分泌到胞外培养基。此外,链霉菌属物种具有比大肠杆菌更有效的分泌机制。分泌系统的性质对于异源表达蛋白质的工业生产是有利的,因为它简化了后续纯化步骤并可提高产量。这些特性和其他特性共同构成链霉素磷酸酯,是大肠杆菌和枯草芽孢杆菌等其他细菌的一种有吸引力的替代品。[19]

5 植物病原菌编辑

到目前为止,已经发现这一属的十个物种对植物具有致病性:[7]

  1. S.scabiei
  2. S.acidisabies
  3. S.europaeiscabiei
  4. S.luridiscabiei
  5. S.niveiscabiei
  6. S.puniciscabiei
  7. S.reticuliscabiei
  8. S.stelliscabiei
  9. S.Turgidiscabies  ( scab disease in potatoes)
  10. S.ipomoeae (soft rot disease in sweet potatoes)

6 医学编辑

链霉菌属是最大的抗生素生产属,生产抗细菌、抗真菌和抗寄生虫药物,以及多种其他生物活性化合物,如免疫抑制剂。[20]链霉菌产生的几乎所有生物活性化合物都是在与基质菌丝体形成气生菌丝一致的时间内产生的。[10]

6.1 抗真菌剂

链霉菌产生多种具有重要药用价值的抗真菌化合物,包括制霉菌素(来自诺氏链球菌)、两性霉素B(来自诺氏链球菌)和纳他霉素(来自纳他霉素链球菌)。

6.2 抗菌药物

链霉菌属成员是许多抗菌药物的来源;其中最重要的有:

  • 氯霉素(来自委内瑞拉链霉菌)[21]
  • 达托霉素(来自玫瑰孢链霉菌)[22]
  • 磷霉素(产自费氏链霉菌)[23]
  • 林可霉素(来自林肯氏球菌)[24]
  • 新霉素(来自费氏链霉菌)[25]
  • 诺如丝菌素
  • 嘌呤霉素(来自白氏球菌)[26]
  • 链霉素(来自格里斯斯链霉菌)[27]
  • 四环素(来源于环孢链球菌和金色链球菌)[28]
  • 齐墩果酸霉素(来自抗生素链球菌)[29][30][31]
  • 衣霉素(来自圆孢酵母)[32]
  • 霉素(来自链霉菌属)[33][34]
  • 博罗霉素(来自抗生素链球菌)[35]
  • 班贝霉素(来自班氏球菌和加纳链球菌,活性化合物为默诺霉素A和C )[36]

克拉维(来自棒状链球菌)是一种与某些抗生素(如阿莫西林)联合使用的药物,通过不可逆的β-内酰胺酶抑制来阻断和或削弱某些细菌抵抗机制。目前正在开发的新型抗感染药包括瓜地诺明(来自链霉菌属,K01-0509),[37]是一种阻断革兰氏阴性菌第三型分泌系统的化合物。

6.3 抗寄生虫药物

阿维链霉菌是是目前应用最广泛的防治线虫和节肢动物感染的药物之一。

6.4 其他

链霉菌产生用于其他医学治疗的化合物不太常见:米格拉斯特汀(来自钝顶链球菌)和博莱霉素(来自轮枝链球菌)是抗肿瘤(抗癌)药物;硼霉素(来自抗生素链球菌)显示出抗HIV-1病毒株的抗病毒活性以及抗菌活性。星形孢菌素(来自星形孢霉属)也具有从抗真菌到抗肿瘤的一系列活性(通过抑制蛋白激酶)。吸水链霉菌和绿色链霉菌产生天然双丙氨磷除草剂。

参考文献

  • [1]

    ^Kämpfer, Peter (2006). "The Family Streptomycetaceae, Part I: Taxonomy". In Dworkin, Martin; Falkow, Stanley; Rosenberg, Eugene; Schleifer, Karl-Heinz; Stackebrandt, Erko. The Prokaryotes. pp. 538–604. doi:10.1007/0-387-30743-5_22. ISBN 978-0-387-25493-7..

  • [2]

    ^Euzéby JP (2008). "Genus Streptomyces". List of Prokaryotic names with Standing in Nomenclature. Retrieved 2008-09-28..

  • [3]

    ^Madigan M, Martinko J, eds. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 978-0-13-144329-7.[页码请求].

  • [4]

    ^Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000). Practical Streptomyces Genetics (2nd ed.). Norwich, England: John Innes Foundation. ISBN 978-0-7084-0623-6.[页码请求].

  • [5]

    ^了解和操作放线菌中的抗生素生产.

  • [6]

    ^Anderson, AS; Wellington, Elizabeth (2001). "The taxonomy of Streptomyces and related genera". International Journal of Systematic and Evolutionary Microbiology. 51 (3): 797–814. doi:10.1099/00207713-51-3-797. PMID 11411701..

  • [7]

    ^Labeda, D. P. (2010). "Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces". International Journal of Systematic and Evolutionary Microbiology. 61 (10): 2525–31. doi:10.1099/ijs.0.028514-0. PMID 21112986..

  • [8]

    ^Zhang, Z.; Wang, Y.; Ruan, J. (1997). "A Proposal to Revive the Genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982)". International Journal of Systematic Bacteriology. 47 (4): 1048–54. doi:10.1099/00207713-47-4-1048. PMID 9336904..

  • [9]

    ^Kim, Seung Bum; Lonsdale, J; Seong, CN; Goodfellow, M (2003). "Streptacidiphilus gen. Nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997". Antonie van Leeuwenhoek. 83 (2): 107–16. doi:10.1023/A:1023397724023. PMID 12785304..

  • [10]

    ^Chater, Keith (1984). "Morphological and physiological differentiation in Streptomyces". In Losick, Richard. Microbial development. pp. 89–115. doi:10.1101/087969172.16.89 (inactive 2019-02-18). ISBN 978-0-87969-172-1. Retrieved 2012-01-19..

  • [11]

    ^Dietz, Alma; Mathews, John (1971). "Classification of Streptomyces spore surfaces into five groups". Applied Microbiology. 21 (3): 527–533. PMC 377216. PMID 4928607..

  • [12]

    ^Bentley, S. D.; Chater, K. F.; Cerdeño-Tárraga, A.-M.; Challis, G. L.; Thomson, N. R.; James, K. D.; Harris, D. E.; Quail, M. A.; Kieser, H.; Harper, D.; Bateman, A.; Brown, S.; Chandra, G.; Chen, C. W.; Collins, M.; Cronin, A.; Fraser, A.; Goble, A.; Hidalgo, J.; Hornsby, T.; Howarth, S.; Huang, C.-H.; Kieser, T.; Larke, L.; Murphy, L.; Oliver, K.; O'Neil, S.; Rabbinowitsch, E.; Rajandream, M.-A.; et al. (2002). "Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)". Nature. 417 (6885): 141–7. Bibcode:2002Natur.417..141B. doi:10.1038/417141a. PMID 12000953..

  • [13]

    ^Chater, Keith F.; Biró, Sandor; Lee, Kye Joon; Palmer, Tracy; Schrempf, Hildgund (2010). "The complex extracellular biology of Streptomyces". FEMS Microbiology Reviews. 34 (2): 171–98. doi:10.1111/j.1574-6976.2009.00206.x. PMID 20088961..

  • [14]

    ^Ikeda, Haruo; Ishikawa, Jun; Hanamoto, Akiharu; Shinose, Mayumi; Kikuchi, Hisashi; Shiba, Tadayoshi; Sakaki, Yoshiyuki; Hattori, Masahira; Ōmura, Satoshi (2003). "Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis". Nature Biotechnology. 21 (5): 526–31. doi:10.1038/nbt820. PMID 12692562..

  • [15]

    ^Paul Dyson (1 January 2011). Streptomyces: Molecular Biology and Biotechnology. Horizon Scientific Press. p. 5. ISBN 978-1-904455-77-6. Retrieved 16 January 2012..

  • [16]

    ^"Streptomyces scabies". Sanger Institute. Retrieved 2001-02-26..

  • [17]

    ^Brawner, Mary; Poste, George; Rosenberg, Martin; Westpheling, Janet (1991). "Streptomyces: A host for heterologous gene expression". Current Opinion in Biotechnology. 2 (5): 674–81. doi:10.1016/0958-1669(91)90033-2. PMID 1367716..

  • [18]

    ^Payne, Gregory F.; Delacruz, Neslihan; Coppella, Steven J. (1990). "Improved production of heterologous protein from Streptomyces lividans". Applied Microbiology and Biotechnology. 33 (4): 395–400. doi:10.1007/BF00176653. PMID 1369282..

  • [19]

    ^Binnie, Craig; Douglas Cossar, J.; Stewart, Donald I.H. (1997). "Heterologous biopharmaceutical protein expression in Streptomyces". Trends in Biotechnology. 15 (8): 315–20. doi:10.1016/S0167-7799(97)01062-7. PMID 9263479..

  • [20]

    ^Watve, Milind; Tickoo, Rashmi; Jog, Maithili; Bhole, Bhalachandra (2001). "How many antibiotics are produced by the genus Streptomyces ?". Archives of Microbiology. 176 (5): 386–90. doi:10.1007/s002030100345. PMID 11702082..

  • [21]

    ^Akagawa, H.; Okanishi, M.; Umezawa, H. (1975). "A Plasmid Involved in Chloramphenicol Production in Streptomyces venezuelae: Evidence from Genetic Mapping". Journal of General Microbiology. 90 (2): 336–46. doi:10.1099/00221287-90-2-336. PMID 1194895..

  • [22]

    ^Miao, V. (2005). "Daptomycin biosynthesis in Streptomyces roseosporus: Cloning and analysis of the gene cluster and revision of peptide stereochemistry". Microbiology. 151 (5): 1507–23. doi:10.1099/mic.0.27757-0. PMID 15870461..

  • [23]

    ^Woodyer, Ryan D.; Shao, Zengyi; Thomas, Paul M.; Kelleher, Neil L.; Blodgett, Joshua A.V.; Metcalf, William W.; Van Der Donk, Wilfred A.; Zhao, Huimin (2006). "Heterologous Production of Fosfomycin and Identification of the Minimal Biosynthetic Gene Cluster". Chemistry & Biology. 13 (11): 1171–82. doi:10.1016/j.chembiol.2006.09.007. PMID 17113999..

  • [24]

    ^Peschke, Ursula; Schmidt, Heike; Zhang, Hui-Zhan; Piepersberg, Wolfgang (1995). "Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11". Molecular Microbiology. 16 (6): 1137–56. doi:10.1111/j.1365-2958.1995.tb02338.x. PMID 8577249..

  • [25]

    ^Howard T. Dulmage (March 1953). "The Production of Neomycin by Streptomyces fradiae in Synthetic Media". Applied Microbiology. 1 (2): 103–106. PMC 1056872. PMID 13031516..

  • [26]

    ^Sankaran, L.; Pogell, B. M. (1975). "Biosynthesis of Puromycin in Streptomyces alboniger: Regulation and Properties of O-Demethylpuromycin O-Methyltransferase". Antimicrobial Agents and Chemotherapy. 8 (6): 721–32. doi:10.1128/AAC.8.6.721. PMC 429454. PMID 1211926..

  • [27]

    ^Distler, Jürgen; Ebert, Andrea; Mansouri, Kambiz; Pissowotzki, Klaus; Stockmann, Michael; Piepersberg, Wolfgang (1987). "Gene cluster for streptomycin biosynthesis inStreptomyces griseus: Nucleotide sequence of three genes and analysis of transcriptional activity". Nucleic Acids Research. 15 (19): 8041–56. doi:10.1093/nar/15.19.8041. PMC 306325. PMID 3118332..

  • [28]

    ^Dr. Mark Nelson; Robert A. Greenwald; Wolfgang Hillen; Mark L. Nelson (2001). Tetracyclines in biology, chemistry and medicine. Birkhäuser. pp. 8–. ISBN 978-3-7643-6282-9. Retrieved 17 January 2012..

  • [29]

    ^"What are Streptomycetes?". Hosenkin Lab; Hiroshima-University. Retrieved 10 August 2015..

  • [30]

    ^Swan, David G.; Rodríguez, Ana M.; Vilches, Carmen; Méndez, Carmen; Salas, José A. (1994). "Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence". MGG Molecular & General Genetics. 242 (3): 358–362. doi:10.1007/BF00280426. ISSN 1432-1874..

  • [31]

    ^"Finto: MeSH: Streptomyces antibioticus". finto: Finnish Thesaurus and Ontology Service. Retrieved 10 August 2015..

  • [32]

    ^Atta, Houssam M. (January 2015). "Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties". Journal of Saudi Chemical Society. 19 (1): 12–22. doi:10.1016/j.jscs.2011.12.011..

  • [33]

    ^Oh, Dong-Chan; Scott, Jarrod J.; Currie, Cameron R.; Clardy, Jon (5 February 2009). "Mycangimycin, a Polyene Peroxide from a Mutualist sp". Organic Letters. 11 (3): 633–636. doi:10.1021/ol802709x. PMC 2640424. PMID 19125624..

  • [34]

    ^Atta, Houssam M. (2010). "Production, Purification, Physico-Chemical Characteristics and Biological Activities of Antifungal Antibiotic Produced by Streptomyces antibioticus, AZ-Z710" (PDF). American-Eurasian Journal of Scientific Research. 5 (1): 39. ISSN 1818-6785. Retrieved 11 August 2015..

  • [35]

    ^Chen, Tom S. S.; Chang, Ching-Jer; Floss, Heinz G. (June 1981). "Biosynthesis of boromycin". The Journal of Organic Chemistry. 46 (13): 2661–2665. doi:10.1021/jo00326a010..

  • [36]

    ^美国国家生物技术信息中心。公共化学复合数据库;CID=53385491,https://pubchem.ncbi.nlm.nih.gov/compound/53385491 (2017年3月8日访问)。.

  • [37]

    ^Holmes, Tracy C.; May, Aaron E.; Zaleta-Rivera, Kathia; Ruby, J. Graham; Skewes-Cox, Peter; Fischbach, Michael A.; Derisi, Joseph L.; Iwatsuki, Masato; o̅Mura, Satoshi; Khosla, Chaitan (2012). "Molecular Insights into the Biosynthesis of Guadinomine: A Type III Secretion System Inhibitor". Journal of the American Chemical Society. 134 (42): 17797–806. doi:10.1021/ja308622d. PMC 3483642. PMID 23030602..

阅读 127
版本记录
  • 暂无